Skip to main content
Log in

Influence of atmospheric circulation on precipitation in Altai Mountains

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons (April-October), but weakly positive or negative trends for the cold seasons (November-March). It was found that these changes correspond to the decreasing contribution of “Northern meridional and Stationary anticyclone (Nm-Sa)” and “Northern meridional and East zonal (Nm-Ez)” circulation groups and to the increasing contribution of “West zonal and Southern meridional (Wz-Sm)” circulation groups, accordingly to the Dzerdzeevskii classification. In addition, it was found that the variation of precipitation has a step change point in 1980. For the warm seasons, the precipitation change at this point is associated with the reduced influence of “West zonal (Wz)”, “Northern meridional and Stationary anticyclone (Nm-Sa)” and “Northern meridional and Southern meridional (Nm-Sm)” circulation groups. For the cold seasons, a substantial increase of “Wz-Sm” and a decrease of “Nm-Sa”, “Nm-Ez” circulation groups are responsible for the precipitation change in the two time periods (1959-1980 and 1981-2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizen EM, Aizen VB, Melack JM, et al. (2001) Precipitation and Atmospheric Circulation Patterns at Mid-Latitudes of Asia. International Journal of Climate 21(5): 535–556. DOI: 10.1002/joc.626

    Article  Google Scholar 

  • Aizen VB, Aizen EM, Fujita K, et al. (2005) Stable-isotope time series and precipitation origin from firn cores and snow samples, Altai glaciers, Siberia. Journal of Glaciology 51(175): 637–654. DOI: 10.3189/172756505781829034

    Article  Google Scholar 

  • Aizen VB, Aizen EM, Joswiak DR, et al. (2006) Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Annals of Glaciology 43(1): 49–60. DOI: 10.3189/172756406781812078

    Article  Google Scholar 

  • Aizen VB, Aizen EM, Melack JM, et al. (2004) Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia. Journal of Geophysical Research 109(D8): D08304. DOI: 10.1029/2003JD003894

    Article  Google Scholar 

  • Anisimov OA, Ziltcova EL, Zaharova OK (2009) Modes of atmospheric circulation and spatial patterns of the air temperature and precipitation: predictive analysis for the Central Asia. Hydrometeorology and Ecology 3: 7–21. (In Russian)

    Google Scholar 

  • Barry R, Perry A (1973) Synoptic Climatology, Methods and Applications. Harper Collins, New York, USA. p 195.

    Google Scholar 

  • Bezuglova NN, Zinchenko GS, Malygina NS, et al. (2012) Response of high-mountain Altai thermal regime to climate global warming of recent decades. Theoretical and Applied Climatology 110(4): 595–605. DOI: 10.1007/s00704-012-0710-2

    Article  Google Scholar 

  • Bothe O, Fraedrich K, Zhu X (2012) Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theoretical and Applied Climatology 108(3): 345–354. DOI: 10.1007/s00704-011-0537-2

    Article  Google Scholar 

  • Brencic M (2016) Statistical analysis of categorical time series of atmospheric elementary circulation mechanisms -Dzerdzeevski Classificationfor the Northern Hemisphere. PLoS ONE 11(4): e0154368. DOI: 10.1371/journal.pone. 0154368

    Article  Google Scholar 

  • Brencic M, Kononova N, Vreca P (2015) Relation between isotopic composition of precipitation and atmospheric circulation patterns. Journal of Hydrology 529(3): 1422–1432. DOI: 10.1016/j.jhydrol.2015.08.040

    Article  Google Scholar 

  • Bulygina ON, Veselov MV, Razuvaeva VN, et al. (2013) Description of the data on main meteorological parameters over Russian stations. VNIGMI-MCD, Obninsk, p 25. (In Russian).

    Google Scholar 

  • Chen Y, Li B, Chen Z, et al. (2014) Climate System in Northwest China. In: Chen Y (eds.), Water Resource Researcher in Northwest China. Springer, Dordrecht Heidelberg, New York, London. pp 51–108. Classification of Northern Hemisphere atmospheric circulation by Dzerdzeevsky`s method. Available online at: http://atmospheric-circulation.ru/about-us/(Accessed on 5 March 2016)

    Chapter  Google Scholar 

  • Cramer W, Yohe GW, Auffhammer M, et al. (2014) Detection and attribution of observed impacts. In: Field CB, Barros VR, Dokken DJ, et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 979–1037.

    Google Scholar 

  • Ding Y, Krishnamurti TN (1987) Heat budget of the Siberian High and the winter monsoon. Monthly Weather Review 115(10): 2428–2449. DOI: 10.1175/1520-0493(1987)115< 2428:HBOTSH>2.0.CO;2

    Article  Google Scholar 

  • Dzerdzeevskii B (1962) Fluctuation of climate and of general circulation of the atmosphere in extra-tropical latitudes of the Northern Hemisphere and some problems of dynamic climatology. Tellus 14(3): 328–336. DOI: 10.1111/j.2153-3490. 1962.tb01345.x

    Article  Google Scholar 

  • Dzerdzeevskii BL (1966) Some aspects of dynamic climatology. Tellus 18: 751–760.

    Article  Google Scholar 

  • Dzerdzeevskii BL (1969) Climatic epochs in the twentieth century and some comments on the analysis of past climates. Quaternary geology and climate. National Academy of Science, Washington, USA. pp 49–60.

    Google Scholar 

  • Egorina AV (2003) Barrier factor in the development of the natural environment of mountains. Edition of Altai State University, Barnaul. p 367. (in Russian)

    Google Scholar 

  • Eichler A, Henderson K, Olivier S, et al. (2009) Temperature response in the Altai region lags solar forcing. Geophysical Research Letters 36(1): L01808. DOI: 10.1029/2008GL03 5930

    Article  Google Scholar 

  • Everitt BS, Landau S, Leese M, et al. (2010) Cluster analysis (5th edition). Arnold, London, UK. p 346.

    Google Scholar 

  • Geng Q, Wu P, Zhao X (2016) Spatial and temporal trends in climatic variables in arid areas of northwest China. International Journal of Climatology 36(12): 4118–4129. DOI: 10.1002/joc.4621

    Article  Google Scholar 

  • Gilbert A, Vincent C (2013) Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures. Geophysical Research Letters 40(10): 2102–2108. DOI: 10.1002/grl.50401

    Article  Google Scholar 

  • Gorbatenko VP, Ippolitov VI, Kabanov MV, et al. (2011) Influence of atmospheric circulation on the temperature regime of Siberia, in Russian. Atmospheric and Oceanic Optics 24(1): 15–21. (in Russian)

    Google Scholar 

  • Groisman PY, Gutman G (2013) Regional Environmental Changes in Siberia and Their Global Consequences. Springer, Netherlands. p 170.

    Book  Google Scholar 

  • Herren P-A, Eichler A, Machguth H, et al. (2013) The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quaternary Science Review 69(1): 59–68. DOI: 10.1016/j. quascirev.2013. 02.025

    Article  Google Scholar 

  • Hewitson B, Janetos AC, Carter TR, et al. (2014) Regional context. In: Barros VR, Field CB, Dokken DJ, et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 1133–1197.

    Google Scholar 

  • Hijioka Y, Lin E, Pereira JJ, et al. (2014) Asia. In: Barros VR, Field CB, Dokken DJ, et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. pp 1327–1370.

    Google Scholar 

  • Huang W, Chen FH, Feng S, et al. (2013) Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chinese Science Bulletin 58(32): 3962–3968. DOI: 10.1007/s11434-013-5970-4

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984): 1382–1385. DOI: 10.1126/science.1183188

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London, UK. p 202.

    Google Scholar 

  • Klinge M, Böhner J, Lehmkuhl F (2003) Climate pattern, snowand timberlines in the Altai Mountains, Central Asia. Erdkunde 57(4): 296–308. DOI: 10.3112/erdkunde. 2003.04. 04

    Article  Google Scholar 

  • Kohler T, Maselli D (2009) Mountains and Climate Change-From Understanding to Action. Published by Geographica Bernensia with the support of the Swiss Agency for Development and Cooperation (SDC), and an international team of contributors. Bern, Switzerland. p 80.

    Google Scholar 

  • Kohler T, Wehrli A, Jurek M (2014) Mountains and climate change: A global concern. Sustainable Mountain Development Series. Bern, Switzerland, Centre for Development and Environment (CDE), Swiss Agency for Development and Cooperation (SDC) and Geographica Bernensia. p 140.

    Google Scholar 

  • Kokorin AO (2011) Climate change and its impacts on ecosystems, the population and economy of the Russian part of the Altai-Sayan Ecoregion. WWF, Moscow, Russia. p 168. (in Russian)

    Google Scholar 

  • Kononova NK (2009) Classification of circulation mechanisms of Northern Hrmispere by B.L. Dzerdzeevskii. Voentekhinizdat, Moscow, Russia. p 372. (In Russian)

    Google Scholar 

  • Kononova NK, Pimankina NV, Yeriskovskaya LA, et al. (2015) Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan. Journal of Arid Land 7(5): 687–695. DOI: 10.1007/s40333-015-0083-3

    Article  Google Scholar 

  • Kononova NK (2010) Long-term fluctuations of the northern hemisphere atmospheric circulation according to Dzerdzeevsii classification. Geography Environment Sustainability 1(3): 25–43.

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, et al. (2014) Europe. In: Barros VR, Field CB, Dokken DJ, et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. pp 1267–1326.

    Google Scholar 

  • Li B, Chen Y, Shi X, et al. (2013) Temperature and precipitation changes in different environments in the arid region of northwest China. Theoretical and Applied Climatology 112(3): 589–596. DOI: 10.1007/s00704-012-0753-4

    Article  Google Scholar 

  • Li B, Chen Y, Chen Z, et al. (2016) Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmospheric Research 167(1): 275–284. DOI: 10.1016/j.atmosres.2015.08.017

    Article  Google Scholar 

  • Litvinova OS, Gulyaeva NV (2010) The analysis of time series of precipitation between the rivers Ob and Irtysh in the XX -the beginning of XX centuries. Environmental Dynamics and Global Climate Changes. 1(1): 38–45. (In Russian)

    Google Scholar 

  • Malygina N, Papina T (2013) Investigation of atmospheric circulation patterns and precipitation variability for interpretation of the Altai ice core records. Available online at: http://www.dacaorg/wsl/daca13/program/DACA13_Abstract _Proceedings (Accessed 4 July 2014)

    Google Scholar 

  • Malygina NS, Barlyaeva TV, Zyablitskaya AG, et al. (2014a) Russian and Mongolian Altai: Peculiarities of the macrocirculation processes that provide precipitation in the last three decades. Izvestiya of Altai State University 83(3–2): 123–128. DOI: 10.14258/izvasu(2014)3.2-22

    Google Scholar 

  • Malygina NS, Zyablitskaya AG, Kononova NK, et al. (2014b) Macro-circulation processes and precipitation in Altai region. Izvestiya of Altai State University 83(3–1): 151–155. DOI: 10.14258/izvasu(2014)3.1-27

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3): 124–259.

    Article  Google Scholar 

  • Mitchell JM, Dzerdzeevskii B, Flohn H, et al. (1966) Climatic Change. World Meteorological Organization, Geneva, Switzerland. p 79.

    Google Scholar 

  • Narozhnyj YuK, Narozhnaya OV, Popova KI (1993) Circulation regime and hydrometeorological conditions during Altai winters. Glaciology of Altai 4(19): 182–198. (In Russian)

    Google Scholar 

  • Papina T, Blyakharchuk T, Eichler A, et al. (2013) Biological proxies recorded in a Belukha ice core, Russian Altai. Climate of the Past 9(5): 2399–2411. DOI: 10.5194/CP-9-2399-2013

    Article  Google Scholar 

  • Popova KI, Lupina NH, Panzhenskaya EI, Egorina AB (1986) Baricco-circulation regime of the atmosphere over the Altai and adjacent areas during the warm period. Glyaciologiya Sibiri 18(1): 12–58. (In Russian)

    Google Scholar 

  • Przybylak R (2003) The climate of Arctic. Kluwer Academic Publisher, Dordrecht, The Netherlands. p 286. RIHMI-WDC-Russia Research Institute of Hydrometeorological Information–World Data Centre. Avaiable online at: http://meteo.ru/english/data/(Accessed on 2 February 2016)

    Book  Google Scholar 

  • Romero-Lankao P, Smith JB, Davidson DJ, et al. (2014) North America. In: Barros VR, Field CB, Dokken DJ, et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. pp 1439–1498.

    Google Scholar 

  • Sahsamanoglou SH, Makrogiannis TJ, Kallimopoulos PP (1991) Some aspects of the basic characteristics of the Siberian anticyclone. International Journal of Climatology 11(8): 827–83. DOI: 10.1002/joc.3370110803 Second Assessment Report of Roshydromet on climate change and their impact on the territory of the Russian Federation. Avaiable online at: http://downloads.igce.ru/publications/OD_2_2014/v2014/htm/1.htm (Accessed on 3 May 2016)

    Article  Google Scholar 

  • Sneyers R (1975) On the statistical analysis of observational series. O.M.M., Technical Note No 143, Geneva, Suisse. p 192

    Google Scholar 

  • Subbotina OI (1995) Atmospheric circulation. Gidrometeoizdat, Ttashkent. p 124. (In Russian)

    Google Scholar 

  • Tursunova A (2014) The interrelation of circulation processes in the atmosphere by B.L. Dzerdzeyevskiywith the change of runoff in the basins of rivers of Central Asia. Open Access Library Journal 1(8): e1080. DOI: 10.4236/oalib.1101080

    Google Scholar 

  • Tursunova A (2015) The interrelation of circulation processes in the atmosphere by B. L.Dzerdzeyevskiy with the change of runoff in the basins of rivers of South Kazakhstan. Applied Water Science 1(4): 1–8.

    Google Scholar 

  • Volkova MB, Cheredko NN, Soklov KI, et al. (2015) Modern space-time structure of the field of extreme rainfall in Western Siberia. Tomsk State University Journal 390(1): 202–2010. (In Russian)

    Article  Google Scholar 

  • Wang MZ, Huang AN, Li H, et al. (2014) Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theoretical and Applied Climatology 116(3): 403–411. DOI: 10.1007/s00704-013-0948-3

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, et al. (2008) Mid-to late Holocene climate change: an overview Quaternary Science Reviews 27(19–20): 1791–1828. DOI: 10.1016/j.quascirev. 2008.06.013

  • Wanner H, Solomina O, Grosjean M, et al. (2011) Structure and origin of Holocene cold events. Quaternary Science Reviews 30(21–22): 3109–3123. DOI: 10.1016 /j.quascirev.2011.07.010

    Article  Google Scholar 

  • Williams MW, Konovalov VG (2008) Central Asia Temperature and Precipitation Data. Available online at: http://nsidc.org/data/docs/noaa/g02174_central_asia_data/(Accessed on 4 September 2015)

    Google Scholar 

  • Yao J, Yang Q, Mao W, et al. (2016) Precipitation trend? Elevation relationship in arid regions of the China. Global and Planetary Change 143(8): 1–9. DOI: 10.1016/j.gloplacha.2016. 05.007

    Article  Google Scholar 

  • Zhang Y, Cai W, Chen Q, et al. (2015) Analysis of changes in precipitation and drought in Aksu River Basin, Northwest China. Advances in Meteorology 2015, Article ID: 215840. DOI: 10.1155/2015/215840

    Google Scholar 

  • Zhou LT, Huang RH (2003) Research on the characteristics of interdecadal variability of summer climate in China and its possible cause. Climatic and Environmental Research 8(4): 275–290

    Google Scholar 

Download references

Acknowledgements

This research is supported by RFBR according to the research project No. 16-35-00188 mol_a and project “Climatic and ecological changes in Siberia by the data on glacio-chemical, diatomic and sporepollen analysis of ice-cores” (No. 0383-2014-0005)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Malygina.

Additional information

http://orcid.org/0000-0001-6358-7273

http://orcid.org/0000-0002-8388-7289

http://orcid.org/0000-0001-5241-0704

http://orcid.org/0000-0001-6562-594X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygina, N., Papina, T., Kononova, N. et al. Influence of atmospheric circulation on precipitation in Altai Mountains. J. Mt. Sci. 14, 46–59 (2017). https://doi.org/10.1007/s11629-016-4162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4162-5

Keywords

Navigation