Skip to main content

Advertisement

Log in

Precipitation climate of Central Asia and the large-scale atmospheric circulation

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The precipitation climate in the larger Tian Shan region of Central Asia is described in terms of the climatological seasonal moisture fluxes and background circulation based on the ERA-40 reanalysis data and a precipitation reanalysis. The study area is partitioned into (1) the Tarim river basin, (2) bordering regions of China, Kyrgyzstan and Kazakhstan, and (3) Northwestern China. Moisture supply to these areas is primarily due to the midlatitude westerlies with contributions from higher latitudes. In addition, moisture from the Indian Ocean is notably imported into the Tarim drainage area. Monthly interannual precipitation variability relates to the variability of hemispheric circulation patterns. Extreme precipitation above and below normal in Western China and Central Asia is analyzed using the standardized precipitation index. Related circulation composites show that, despite regional and seasonal differences, episodes of extreme and severe dryness are dominated by various upstream standing wave patterns from the North Atlantic to Central Asia. These features extend further downstream to the North Pacific. Non-symmetry between wet and dry composites is noted upstream and in regional moisture flux composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126

    Article  Google Scholar 

  • Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Climate Status Report No. 2004. German Weather Service, Offenbach, pp. 181–190

  • Blender R, Fraedrich K (2006) Long term memory of the hydrologic cycle and river runoffs in China in a high-resolution climate model. Int J Climatol 26:1547–1556

    Article  Google Scholar 

  • Blender R, Zhu X, Zhang D, Fraedrich K (2010) Yangtze runoff, precipitation, and the East Asian monsoon in a 2800 years climate control simulation. Quatern Int. doi:10.1016/j.quaint.2010.10.017

  • Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295

    Article  Google Scholar 

  • Bordi I, Sutera A (2001) Fifty years of precipitation: some spatially remote teleconnections. Water Res Manage 15:247–280

    Article  Google Scholar 

  • Bordi I, Fraedrich K, Jiang J-M, Sutera A (2004) Spatio-temporal variability of dry and wet periods in eastern China. Theor Appl Climatol 79:81–91

    Article  Google Scholar 

  • Bothe O, Fraedrich K, Zhu X (2010) The large-scale circulations and summer drought and wetness on the Tibetan plateau. Int J Climatol 30:844–855. doi:10.1002/joc.1946

    Google Scholar 

  • Bothe O, Fraedrich K, Zhu X (2011) Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. Int J Climatol 31:832–846. doi:10.1002/joc.2124

    Article  Google Scholar 

  • Branstator G (2002) Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic oscillation. J Climate 15:1893–1910

    Article  Google Scholar 

  • Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Climate 18:3483–3505. doi:10.1175/JCLI3473.1

    Article  Google Scholar 

  • Ding Q, Wang B, Wallace JM, Branstator G (2011) Tropical-extratropical teleconnections in boreal summer: observed interannual variability. J Climate 24:1878–1896. doi:10.1175/2011JCLI3621.1

    Article  Google Scholar 

  • Dirmeyer PA, Brubaker KL (2007) Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J Hydrometeorol 8:20–37

    Article  Google Scholar 

  • Domrös M (2001) Räumliche und zeitliche Variabilität der Sommerniederschläge in China. Geogr Runds 53:36–41 (in German)

    Google Scholar 

  • Domrös M, Peng G (1988) The climate of China. Springer, Berlin, p 360

    Book  Google Scholar 

  • Dracup JA, Lee KS, Paulson EG Jr (1980) On the definition of droughts. Water Resour Res 16:297–302

    Article  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Grabs W (1999) Global, composite runoff fields based on observed river discharge and simulated water balances. Technical Report 22. Global Runoff Data Center, Koblenz, p 115

    Google Scholar 

  • Fekete BM, Vörösmarty CJ, Grabs W (2000) UNH/GRDC composite runoff fields V 1.0. Water Systems Analysis Group, University of New Hampshire, Durham. Available at: http://www.grdc.sr.unh.edu/

  • Fujinami H, Yasunari T (2009) The effects of midlatitude waves over and around the Tibetan plateau on submonthly variability of the east Asian summer monsoon. Mon Wea Rev 137:2286–2304

    Article  Google Scholar 

  • Fukutomi Y, Masuda K, Yasunari T (2011) Spatiotemporal structures of the intraseasonal oscillations of precipitation over northern Eurasia during summer. Int J Climatol. doi:10.1002/joc.2293

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707

    Google Scholar 

  • Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27:1295–1298

    Article  Google Scholar 

  • Hong C-C, Lu M-M, Kanamitsu M (2008) Temporal and spatial characteristics of positive and negative Indian ocean dipole with and without ENSO. J Geophys Res 113:D08107. doi:10.1029/2007JD009151

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer H, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Iwasaki H (2006) Impact of interannual variability of meteorological parameters on vegetation activity over Mongolia. J Meteor Soc Japan 84:745–762

    Article  Google Scholar 

  • James IN, Hoskins BJ (1985) Some comparisons of atmospheric internal and boundary baroclinic instability. J Atmos Sci 42:2142–2155

    Article  Google Scholar 

  • Li J, Gou X, Cook ER, Chen F (2006) Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophys Res Lett 33:L07715

    Article  Google Scholar 

  • Liu X, Yin Z-Y (2001) Spatial and temporal variation of summer precipitation over the eastern Tibetan plateau and the North Atlantic Oscillation. J Climate 14:2896–2909

    Article  Google Scholar 

  • McKee, TB, Doeskin NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Eighth Conference on applied climatology, American Meteorological Society, Anaheim, pp 179–184

  • Morinaga Y, Tian SF, Shinoda M (2003) Winter snow anomaly and atmospheric circulation in Mongolia. Int J Climatol 23:1627–1636

    Article  Google Scholar 

  • NOAA, 2011, Northern Hemisphere Teleconnection Patterns, http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml

  • Qian YF, Zheng YQ, Zhang Y, Miao MQ (2003) Responses of China’s summer monsoon climate to snow anomaly over the Tibetan plateau. Int J Climatol 23:593–613

    Article  Google Scholar 

  • Rodwell MJ, Hoskins B (1996) Monsoons and the dynamics of deserts. Quart J Roy Meteorol Soc 122:1385–1404

    Article  Google Scholar 

  • Sato T, Tsujimura M, Yamanaka T, Iwasaki H, Sugimoto A, Sugita M, Kimura F, Davaa G, Oyunbaatar D (2007) Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. J Geophys Res 112:D17112. doi:10.1029/2006JD008321

    Article  Google Scholar 

  • Schiemann R, Lüthi D, Vidale PL, Schär C (2008) The precipitation climate of Central Asia—intercomparison of observational and numerical data sources in a remote semiarid region. Int J Climatol 28:295–314. doi:10.1002/joc.1532

    Article  Google Scholar 

  • Schiemann R, Lüthi D, Vidale PL, Schär C (2009) Seasonality and interannual variability of the westerly jet in the Tibetan-Plateau region. J Climate 22:2940–2957. doi:10.1175/2008JCLI2625.1

    Article  Google Scholar 

  • Sienz F, Bordi I, Fraedrich K, Schneidereit A (2007) Extreme dry and wet events in Iceland: observations, simulations and scenarios. Meteorol Zeitsch 16:9–16

    Article  Google Scholar 

  • Simmonds I, Bi D, Hope P (1999) Atmospheric water vapor flux and its association with rainfall in China in summer. J Climate 12:1353–1367

    Article  Google Scholar 

  • Simmons AJ (2001) Development of theERA-40 data assimilation system. ERA-40 Project Report Series No. 3, pp 11–30

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Tao H, Gemmer M, Bai Y, Buda S, Mao W (2011) Trends of streamflow in the Tarim river basin during the past fifty years: human impact or climate change? J Hydrol 400:1–9. doi:10.1016/j.jhydrol.2011.01.016

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrew U, Da Costa BV, Fiorino M, Gibson JK, Haseler J, Hemandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, López-Moreno JI, Lorentz S, Schädler B, Schreier H, Schwaiger K, Vuille M, Woods R (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15:471–504. doi:10.5194/hess-15-471-2011

    Article  Google Scholar 

  • Wakabayashi S, Kawamura R (2004) Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J Meteor Soc Japan Ser II 82:1577–1588

    Article  Google Scholar 

  • Xiong W, Lin E, Xu Y (2007a) Climate change and critical thresholds in China’s food security. Clim Change 81:205–221

    Article  Google Scholar 

  • Xiong W, Matthews R, Holman I, Lin E, Xu Y (2007b) Modelling China’s potential maize production at regional scale under climate change. Clim Change 85:433–451. doi:10.1007/s10584-007-9284-x

    Article  Google Scholar 

  • Yang S, Lau K-M, Yoo S-H, Kinter JL, Miyakoda K (2004) Upstream subtropical signals preceding the Asian summer monsoon circulation. J Climate 17:4213–4229

    Article  Google Scholar 

  • Yatagai A, Yasunari T (1998) Variation of summer water vapor transport related to precipitation over and around the arid region in the interior of the Eurasian continent. J Meteor Soc Japan Ser II 76:799–815

    Google Scholar 

  • Yihui D, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142

    Article  Google Scholar 

  • Zhao H, Moore GWK (2006) Reduction in Himalayan snow accumulation and weakening of the trade winds over the Pacific since the 1840 s. Geophys Res Lett 33:L17709. doi:10.1029/2006GL027339

    Article  Google Scholar 

  • Zhu X, Bothe O, Fraedrich K (2011) Summer atmospheric bridging between Europe and East Asia: influences on drought and wetness on the Tibetan Plateau. Quat Int 236:151–157. doi:10.1016/j.quaint.2010.06.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous referees for their thoughtful comments, which helped to improve the manuscript as did discussions with Frank Sienz. Financial support by the Deutsche Forschungsgemeinschaft and the Klimacampus Hamburg is appreciated. We thank the DWD, the University of New Hampshire, the Climate Prediction Center at NOAA, the German Federal Institute of Hydrology, and the Model and Data group of the Max Planck Institute for Meteorology for providing the data. KF and XZ acknowledge support of the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Bothe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bothe, O., Fraedrich, K. & Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor Appl Climatol 108, 345–354 (2012). https://doi.org/10.1007/s00704-011-0537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0537-2

Keywords

Navigation