Skip to main content
Log in

Implication of surface fractal analysis to evaluate the relative sensitivity of topography to active tectonics, Zagros Mountains, Iran

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Fractal geometry is increasingly becoming a useful tool for modeling and quantifying the complex patterns of natural phenomena. The Earth’s topography is one of these phenomena that have fractal characteristics. This paper investigates the relative sensitivity of topography to active tectonics using ASTER Global Digital Elevation Model. The covering divider method was used for direct extraction of surface fractal dimension (D surf ) to estimate the roughness-surface of topography with aid of geographic information system (GIS) techniques. This evaluation let us highlight the role of the geomorphic and tectonic processes on the spatial variability of fractal properties of natural landforms. Geomorphic zones can be delineated using fractal dimension mapping in which variability of surface fractal dimension reflects the roughness of the landform surface and is a measure of topography texture. Obtained results showed this method can be a quick and easy way to assess the distribution of land surface deformation in different tectonic settings. The loose alluvial deposits and irregularities derived by tectonic activity have high fractal dimensions whereas the competent formations and higher wavelength folded surfaces have lower fractal dimensions. According to the obtained results, the Kazerun Fault Zone has a crucial role in the separation of the Zagros Mountain Ranges into the different lithological, geomorphological and structural zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrle R, Abrahams AD (1989) Fractal techniques and the surface roughness of talus slopes. Earth Surface processes and landforms 14(3): 197–209. DOI: 10.1002/esp.3290140303.

    Article  Google Scholar 

  • Andrle R (1996) The west coast of Britain: statistical self-similarity vs. characteristic scales in the landscape. Earth Surface Processes and Landforms 21(10): 955–962. DOI: 10.1002/(SICI)1096-9837(199610)21:10〈955::AID-ESP639〉3.0.CO;2-Y.

    Article  Google Scholar 

  • Authemayou C, Bellier O, Chardon D, et al. (2005) Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran). Comptes Rendus Geoscience 337: 539–545. doi: 10.1016/j.crte.2004.12.007.

    Article  Google Scholar 

  • Aviles CA, Scholz CH, Boatwright J (1987) Fractal analysis applied to characteristic segments of the San Andreas Fault. Journal of Geophysical Research 92: 331–344. DOI: 10.1029/JB092iB01p00331.

    Article  Google Scholar 

  • Baker C, Jackson J, Priestley K (1993) Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: strike-slip faulting within a fold-and-thrust belt. Geophysical Journal International 115: 41–61. DOI: 10.1111/j.1365-246X.1993.tb05587.x.

    Article  Google Scholar 

  • Barton CC (1995) Fractal analysis of scaling and spatial clustering of fractures. Fractals in the earth sciences: 141–178. DOI: 10.1007/978-1-4899-1397-5_8.

    Chapter  Google Scholar 

  • Beauvais AA, Montgomery DR (1997) Are channel networks statistically self-similar? Geology 25(12): 1063–1066. DOI: 10.1130/0091-7613(1997)025〈1063:ACNSSS〉2.3.CO;2.

    Article  Google Scholar 

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241(3): 193–224. 10.1016/0040-1951(94)00185-C

    Article  Google Scholar 

  • Bi L, He H, Wei Z, et al. (2012) Fractal properties of landforms in the Ordos Block and surrounding areas, China. Geomorphology 175–176: 151–162. DOI: 10.1016/j.geomorph.2012.07.006

    Article  Google Scholar 

  • Burrough PA (1983) Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. Journal of Soil Science 34(3): 577–597. DOI: 10.1111/j.1365-2389.1983.tb01057.x

    Article  Google Scholar 

  • Champagnac JD, Molnar P, Sue C, et al. (2012) Tectonics, climate, and mountain topography. Journal of Geophysical Research Solid Earth 117(B02403): 1–34. DOI: 10.1029/2011JB008348.

    Google Scholar 

  • Chase CG, (1992) Fluvial land sculpting and the fractal dimension of topography. Geomorphology 5: 39–57. DOI: 10.1016/0169-555X(92)90057-U.

    Article  Google Scholar 

  • Chaudhuri BA, Sarkar N (1995) Texture segmentation using fractal dimension. Pattern Analysis and Machine Intelligence IEEE Transactions on 17(1): 72–77. DOI: 10.1109/34.368149.

    Article  Google Scholar 

  • Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers and Geosciences 12(5): 713–722. DOI: 10.1016/0098-3004(86)90047-6.

    Article  Google Scholar 

  • Drăguţ L, Eisank C (2012) Automated object-based classification of topography from SRTM data. Geomorphology 141: 21–33. DOI: 10.1016/j.geomorph.2011.12.001.

    Google Scholar 

  • Eastman JR (1985) Single-pass measurement of the fractal dimension of digitized cartographic lines: paper presented at the annual conference of the Canadian Cartographic Association.

    Google Scholar 

  • Etzelmüller B, Sulebak JR (2000) Developments in the use of digital elevation models in periglacial geomorphology and glaciology. Physische Geographie 41: 35–58.

    Google Scholar 

  • Etzelmüller B, Ødegård RS, Berthling I, et al. (2001) Terrain parameters and remote sensing in the analysis of permafrost distribution and periglacial processes: Principles and examples from southern Norway. Permafrost and Periglacial Processes 12: 79–92. DOI: 10.1002/ppp.384.

    Article  Google Scholar 

  • Falcon NL (1969) Problems of the relationship between surface structure and deep displacements illustrated by the Zagros Range. Geological Society, London, Special Publications 3(1): 9–21. DOI: 10.1144/GSL.SP.1969.003.01.02.

    Article  Google Scholar 

  • Falconer KJ (1990) Fractal geometry Mathematical Foundations and Applications. John Wiley and sons, Chichester, UK. p. 366.

    Google Scholar 

  • Fedder J (1988) Fractal. Plenum Press, New York, USA. p 284.

    Book  Google Scholar 

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381(1): 235–273. DOI: 10.1016/j.tecto.2002.06.004.

    Article  Google Scholar 

  • Goodchild MF (1982) The fractional Brownian process as a terrain simulation model. Modeling and Simulation 13: 1133–1137.

    Google Scholar 

  • Goodchild MF (2011) Scale in GIS: An overview. Geomorphology 130(1): 5–9. DOI: 10.1016/j.geomorph.2010.10.004.

    Article  Google Scholar 

  • Hatzfeld D, Molnar P (2010) Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics 48: RG2005. DOI: 10.1029/2009RG000304.

    Article  Google Scholar 

  • Hilley GE, Arrowsmith JR (2008) Geomorphic response to uplift along the Dragon’s Back pressure ridge, Carrizo Plain, California. Geology 36(5): 367–370. DOI: 10.1130/G24517A.1.

    Article  Google Scholar 

  • Hjort J, Luoto M (2006) Modelling patterned ground distribution in Finnish Lapland: An integration of topographical, ground and remote sensing information. Geografiska Annaler Series a-Physical Geography 88A: 19–29. DOI: 10.1111/j.0435-3676.2006.00280.x.

    Article  Google Scholar 

  • Holtz F, Lenné S, Ventura G, et al. (2004) Non-linear deformation and break up of enclaves in a rhyolitic magma: A case study from Lipari Island (southern Italy). Geophysical Research Letters 31(24611). DOI: 10.1029/2004GL021590.

    Google Scholar 

  • Huang J, Turcotte DL (1989) Fractal mapping of digitized images: Application to the topography of Arizona and comparisons with synthetic images. Journal of Geophysical Research Solid Earth 94(B6): 7491–7495. DOI: 10.1029/JB094iB06p07491.

    Article  Google Scholar 

  • Ida T, Sambonsugi Y (1998) Image segmentation and contour detection using fractal coding. Circuits and Systems for Video Technology, IEEE Transactions on 8(8): 968–975. DOI: 10. 1109/76.736726.

    Article  Google Scholar 

  • Klinkenberg B (1992) Fractals and morphometric measures: is there a relationship? Geomorphology 5(1): 5–20. DOI: 10. 1016/0169-555X(92)90055-S.

    Article  Google Scholar 

  • Klinkenberg B (1994) A review of methods used to determine the fractal dimension of linear features. Mathematical Geology 26(1): 23–46. DOI: 10.1007/BF02065874.

    Article  Google Scholar 

  • Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam, Netherlands. p 424.

    Google Scholar 

  • Kusumayudha SB, Zen MT, Notosiswoyo S, et al. (2000) Fractal analysis of the Oyo River, cave systems, and topography of the Gunungsewu karst area, central Java, Indonesia. Hydrogeology Journal 8(3): 271–278. DOI: 10.1007/s100400050014.

    Article  Google Scholar 

  • La Barbera P, Rosso R (1989) On the fractal dimension of stream networks. Water Resources Research 25(4): 735–741. DOI: 10.1029/WR025i004p00735.

    Article  Google Scholar 

  • Lifton NA, Chase CG (1992) Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology 5(1): 77–114. DOI: 10.1016/0169-555X(92)90059-W.

    Article  Google Scholar 

  • Liu T (1992) Fractal structure and properties of stream networks. Water resources research 28(11): 2981–2988. DOI: 10.1029/92WR01516.

    Article  Google Scholar 

  • Liu, SC, Chang S (1997) Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. Image Processing, IEEE Transactions on 6(8): 1176–1184. 10.1109/83.605414.

    Article  Google Scholar 

  • Luoto M, Seppala M (2002) Modelling the distribution of palsas in Finnish lapland with logistic regression and GIS. Permafrost and Periglacial Processes 13: 17–28. DOI: 10.1002/ppp.404.

    Article  Google Scholar 

  • Luoto M, Hjort J (2004) Generalized linear modelling in periglacial studies: Terrain parameters and patterned ground. Permafrost and Periglacial Processes 15: 327–338. DOI: 10.1002/ppp.482.

    Article  Google Scholar 

  • Luoto M, Hjort J (2005) Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology 67: 299–315. DOI: 10.1016/j.geomorph.2004.10.006.

    Article  Google Scholar 

  • MacMillan RA, Shary PA (2009) Landforms and landform elements in geomorphometry. Developments in soil science 33: 227–254. DOI: 10.1016/S0166-2481(08)00009-3

    Article  Google Scholar 

  • Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers 3: 407–428. DOI: 10.1016/j.gsf.2011.12.002.

    Article  Google Scholar 

  • Mandelbrot BB (1967) How long is the coast of Britain. Science 156(3775): 636–638. DOI: 10.1126/science.156.3775.636

    Article  Google Scholar 

  • Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, San Francisco, CA, USA. p 468.

    Google Scholar 

  • Mark DM (1984) Fractal dimension of a coral reef at ecological scales: a discussion. Marine ecology Progress series 14(2–3): 293–294.

    Article  Google Scholar 

  • Mark DM, Aronson PB (1984) Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Journal of the International Association for Mathematical Geology 16(7): 671–683. DOI: 10.1007/BF01033029.

    Article  Google Scholar 

  • McBratney AB, Santos MLM, Minasny B (2003) On digital soil mapping. Geoderma 117: 3–52. DOI: 10.1016/S0016-7061(03)00223-4.

    Article  Google Scholar 

  • Mobasher K, Babaie HA (2008) Kinematic significance of fold-and fault-related fracture systems in the Zagros Mountains, southern Iran. Tectonophysics 451(1): 156–169. DOI: 10.1016/j.tecto.2007.11.060.

    Article  Google Scholar 

  • Motiei H (1993) Stratigraphy of Zagros. Treatise on the geology of Iran. Geological Survey of Iran. p 536.

    Google Scholar 

  • Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532: 27–60. DOI: 10.1016/j.tecto.2012.01.022.

    Article  Google Scholar 

  • Nikora VI, Sapozhnikov VB (1993) River network fractal geometry and its computer simulation. Water Resources Research 29(10): 3569–3575. DOI: 10.1029/93WR00966.

    Article  Google Scholar 

  • Peitgen HO, Jurgens H, Saupe D (1992) Chaos and Fractals: New Frontiers of Science. Springer, Berlin, Germany. p 864.

    Book  Google Scholar 

  • Pentland AP (1984) Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 661–674. DOI: 10.1109/TPAMI.1984.4767591.

    Article  Google Scholar 

  • Persson BNJ (2014) On the Fractal Dimension of Rough Surfaces. Tribology Letters 54(1): 99–106. DOI: 10.1007/s11249-014-0313-4.

    Article  Google Scholar 

  • Perugini D, Poli G (2005) Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: field evidence and fluid-mechanics experiments. Geology 33(1): 5–8. DOI: 10.1130/G21075.1.

    Article  Google Scholar 

  • Perugini D, Petrelli M, Poli G (2006) Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth and Planetary Science Letters 243(3): 669–680. DOI: 10.1016/j.epsl.2006.01.026.

    Article  Google Scholar 

  • Perugini D, Valentini L, Poli G (2007) Insights into magma chamber processes from the analysis of size distribution of enclaves in lava flows: A case study from Vulcano Island (Southern Italy). Journal of Volcanology and Geothermal Research 166(3): 193–203. DOI: 10.1016/j.jvolgeores.2007.07.017.

    Article  Google Scholar 

  • Perugini D, Kueppers U (2012) Fractal analysis of experimentally generated pyroclasts: A tool for volcanic hazard assessment. Acta Geophysica 60(3): 682–698. DOI: 10.2478/s11600-012-0019-7.

    Article  Google Scholar 

  • Pike RJ (2000) Geomorphometry-diversity in quantitative surface analysis. Progress in Physical Geography 24(1): 1–20. DOI: 10.1177/030913330002400101.

    Google Scholar 

  • Rahman Z, Slob S, Hack R (2006) Deriving roughness characteristics of rock mass discontinuities from terrestrial laser scan data. In Proceedings of 10th IAEG Congress: Engineering geology for tomorrow’s cities, Nottingham, UK.

    Google Scholar 

  • Ramisch A, Bebermeier W, Hartmann K, et al. (2012) Fractals in topography: Application to geoarchaeological studies in the surroundings of the necropolis of Dahshur, Egypt. Quaternary International 266: 34–46. DOI: 10.1016/j.quaint.2012.02.045.

    Article  Google Scholar 

  • Richardson LF (1961) The problem of contiguity. General systems yearbook 6: 139–187.

    Google Scholar 

  • Sammis CG, Osborne RH, Anderson JL, et al. (1986) Selfsimilar cataclasis in the formation of fault gouge. Pure and Applied Geophysics 124(1–2): 53–78. DOI: 10.1007/BF00875719.

    Article  Google Scholar 

  • Sarkarinejad K, Azizi A (2008) Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology 30(1): 116–136. DOI: 10.1016/j.jsg.2007.10.001.

    Article  Google Scholar 

  • Seekell DA, Pace ML, Tranvik LJ, et al. (2013) A fractal-based approach to lake size-distributions. Geophysical Research Letters 40(3): 517–521. DOI: 10.1002/grl.50139.

    Article  Google Scholar 

  • Sepehr M, Cosgrove JW (2005) Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran. Tectonics 24: TC5005. DOI: 10.1029/2004TC001725.

    Article  Google Scholar 

  • Shelberg MC, Lam N, Moellering H (1983) Measuring the fractal dimensions of surfaces. Defense Mapping Agency Aerospace Center ST Louis AFS MO.

    Google Scholar 

  • Shen XH, Zou LJ, Zhang GF, et al. (2011) Fractal characteristics of the main channel of Yellow River and its relation to regional tectonic evolution. Geomorphology 127(1): 64–70. DOI: 10.1016/j.geomorph.2010.12.007.

    Article  Google Scholar 

  • Snow RS (1989) Fractal sinuosity of stream channels. Pure and applied geophysics 131(1–2): 99–109. DOI: 10.1007/BF00874482.

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196(1): 17–33. DOI: 10.1016/S0012-821X(01)00588-X.

    Article  Google Scholar 

  • Sukmono S, Zen MT, Kadir WGA, et al. (1996) Fractal geometry of the Sumatra active fault system and its geodynamical implications. Journal of Geodynamics 22(1): 1–9. DOI: 10.10 16/0264-3707(96)00015-4.

    Article  Google Scholar 

  • Sung QC, Chen YC, Chao PC (1998) Spatial variation of fractal parameters and its geological implications. Terrestrial, Atmospheric and Oceanic Sciences 9(4): 655–672.

    Google Scholar 

  • Sung QC, Chen YC (2004) Self-affinity dimensions of topography and its implications in morphotectonics: an example from Taiwan. Geomorphology 62(3): 181–198. DOI: 10.1016/j.geomorph.2004.02.012.

    Article  Google Scholar 

  • Tachikawa T, Hato M, Kaku M, et al. (2011) Characteristics of ASTER GDEM version 2. In Geoscience and Remote Sensing Symposium (IGARSS) IEEE International: 3657–3660. DOI: 10.1109/IGARSS.2011.6050017.

    Google Scholar 

  • Talbot CJ, Alavi M (1996) The past of a future syntaxis across the Zagros. Geological Society, London, Special Publications 100(1): 89–109. DOI: 10.1144/GSL.SP.1996.100.01.08.

    Article  Google Scholar 

  • Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International 156: 506–526. DOI: 10.1111/j.1365-246X.2004.02092.x.

    Article  Google Scholar 

  • Tarboton DG, Bras RL, Rodriguez-Iturbe I (1988) The fractal nature of river networks. Water Resources Research 24(8): 1317–1322. DOI: 10.1029/WR024i008p01317.

    Article  Google Scholar 

  • Tarolli P (2014) High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 216: 295–312. DOI: 10.1016/j.geomorph.2014.03.008.

    Article  Google Scholar 

  • Tavakoli F, Walpersdorf A, Authemayou C, et al. (2008) Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science Letters 275: 342–347. DOI: 10.1016/j.epsl.2008.08.030.

    Article  Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. Journal of Geophysical Research Solid Earth 91: 1921–1926. DOI: 10.1029/JB091iB02p01921.

    Article  Google Scholar 

  • Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge University Press, New York, USA. p 416.

    Google Scholar 

  • Wilson TH, Dominic J (1998) Fractal interrelationships between topography and structure. Earth Surface Processes and Landforms 23(6): 509–525. DOI: 10.1002/(SICI)1096-9837(199806)23:6〈509::AID-ESP864〉3.0.CO;2-D.

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. John Wiley and Sons, New York, USA. p 479.

    Google Scholar 

  • Xie H, Wang JA, Stein E (1998) Direct fractal measurement and multifractal properties of fracture surfaces. Physics letters A 242(1): 41–50. DOI: 10.1016/S0375-9601(98)00098-X.

    Article  Google Scholar 

  • Xie H, Wang JA (1999) Direct fractal measurement of fracture surfaces. International Journal of Solids and Structures 36(20): 3073–3084. DOI: 10.1016/S0020-7683(98)00141-3.

    Article  Google Scholar 

  • Xu T, Moore ID, Gallant JC (1993) Fractals, fractal dimensions and landscapes — a review. Geomorphology 8(4): 245–262. DOI: 10.1016/0169-555X(93)90022-T.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nourbakhsh.

Additional information

0000-0002-8385-6837

0000-0003-0098-5850

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghih, A., Nourbakhsh, A. Implication of surface fractal analysis to evaluate the relative sensitivity of topography to active tectonics, Zagros Mountains, Iran. J. Mt. Sci. 12, 177–185 (2015). https://doi.org/10.1007/s11629-014-3005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3005-5

Keywords

Navigation