Skip to main content
Log in

Long-term assessment of transgene behavior in barley: Ds-mediated delivery of bar results in robust, stable, and heritable expression

  • Biotechnology/Genetic Transformation/Functional Genomics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The utility of transgenic plants for both experimental and practical agronomic purposes is highly dependent on stable, predictable, and heritable expression of the introduced genes. This requirement is frequently unfulfilled, and transgenes often are completely silenced. Studies of transgenic loci have shown that rearrangements of transgenes occur during the integration process, some of which are potent cues that induce silencing. Conversely, intact, single-copy transgenes produced via transposon-mediated gene delivery have shown relatively stable expression, at least in early-generation progeny. To examine the long-term expression stability of a bar expression cassette delivered via Dissociation (Ds)-mediated transposition, we examined qualitative and quantitative expression in barley (Hordeum vulgare L.) populations developed for transposon tagging. Qualitative assessments of herbicide resistance among 106 lines showed bar expression to be stable for at least five generations of advance via self-pollination. Similarly, qualitatively stable expression was observed among 31 near-isogenic lines derived from at least seven backcrosses to the cultivar Garnet. Quantitative RT-PCR measurements of bar expression were conducted for eight near-isogenic lines and their donor parents. The expression of bar was highly correlated in parent and progeny near-isogenic lines, showing high heritability of bar expression. These data demonstrate stable, predictable transgene expression following Ds-mediated delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Bregitzer P, Cooper LD, Hayes PM, Lemaux PG, Singh J, Sturbaum AK (2007) Viability and bar expression are negatively correlated in Oregon Wolfe barley dominant hybrids. Plant Biotech J 5:381–388

    Article  CAS  Google Scholar 

  • Bregitzer P, Tonks D (2003) Inheritance and expression of transgenes in barley, Hordeum vulgare L. Crop Sci 43:4–12

    Article  CAS  Google Scholar 

  • Brown RH, Dahleen LS, Bregitzer P (2012) An efficient method for flanking sequence isolation in barley. Crop Sci 52:1229–1234

    Article  CAS  Google Scholar 

  • Brown RH, Raboy V, Bregitzer P (2013) Unintended consequences: high phosphinothricin acetyltransferase activity related to reduced fitness in barley. In Vitro Cell Dev Biol—Plant (in press)

  • Choi HW, Lemaux PG, Cho MJ (2003) Long-term stability of transgene expression driven by barley endosperm-specific hordein promoters in transgenic barley. Plant Cell Rep 21:1108–1120

    Article  PubMed  CAS  Google Scholar 

  • Choi HW, Yu XH, Lemaux PG, Cho MJ (2009) Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants. Plant Cell Rep 28:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Cooper LD, Marquez-Cedillo L, Singh J, Sturbaum AK, Zhang S, Edwards V, Johnson K, Kleinhofs A, Rangel S, Carollo V, Bregitzer P, Lemaux PG, Hayes PM (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Gen Genomics 272:181–193

    Article  CAS  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt- endotoxin gene. Mol Breed 10:165–180

    Article  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336

    Article  PubMed  CAS  Google Scholar 

  • Giulietti A, Overbergh L, Valckz D, Decallonne B, Bouillion R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11:1286–1292

    CAS  Google Scholar 

  • International Barley Genome Sequencing Consortium (2012) A physical, genetic, and functional sequence assembly of the barley genome. Nature 491:711–716. doi:10.1038/nature11543

    Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat–barley chromosome addition lines. Heredity 46:161–174

    Article  Google Scholar 

  • Ito T, Motohashi R, Kuromori T, Mizukado S, Sakurai T, Kanahara H, Seki M, Shinozaki K (2002) A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol 129:1695–1699

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Gilbert DE, Grady KL, Jorgenson RA (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium C58 derivatives. Mol Gen Genet 207:478–485

    Article  CAS  Google Scholar 

  • Jorgensen R, Snyder C, Jones JDG (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:471–477

    Article  CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization, and interaction in plants. Plant Mol Biol 52:247–258

    Article  PubMed  CAS  Google Scholar 

  • Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J 24:253–263

    Article  PubMed  CAS  Google Scholar 

  • Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE, Lemaux PG (2001) Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Krens FA, Mans RMW, van Slogteren TMS, Hoge JHC, Wullems GJ, Shilperoort RA (1985) Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti-plasmid DNA: co-transfer of T-DNA and non T-DNA sequences. Plant Mol Biol 5:223–234

    Article  CAS  Google Scholar 

  • Kumpatla SP, Hall TC (1998) Recurrent onset of epigenetic silencing in rice harboring a multi-copy transgene. Plant J 14:129–135

    Article  PubMed  CAS  Google Scholar 

  • Lange M, Vincze E, Møller MG, Holm PB (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep 25:815–820

    Article  PubMed  CAS  Google Scholar 

  • Lebel EG, Masson H, Bogucki A, Paszkoski J (1995) Transposable elements as plant transformation vectors for long stretches of foreign DNA. Theor Appl Genet 91:899–906

    CAS  Google Scholar 

  • Li C, Wei J, Lin Y, Chen H (2012) Gene silencing using the recessive rice bacterial blight resistance gene cxa13 as a new paradigm in plant breeding. Plant Cell Rep 31:851–862

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Gan Q, Chi X, Qin S (2008) Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep 27:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  PubMed  CAS  Google Scholar 

  • Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Bregitzer P, Zhang S, Lemaux PG (2003) Methylation of the exon/intron region in the Ubi1 promoter complex correlates with transgene silencing in barley. Plant Mol Biol 53:327–340

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Ziv M, Lemaux PG (2006) Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol 62:15–28

    Article  PubMed  CAS  Google Scholar 

  • Morino K, Olsen OA, Shimamoto K (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J 17:275–285

    Article  PubMed  CAS  Google Scholar 

  • Müller E, Lörz H, Lütticke S (1996) Variability of transgene expression in clonal cell lines of wheat. Plant Sci 114:71–82

    Article  Google Scholar 

  • Niu JH, Jian H, Xu JM, Guo YD, Liu Q (2010) RNAi technology extends its reach: engineering plant resistance against harmful eukaryotes. Afr J Biotech 9:7573–7582

    CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A 99:1443–1448

    Article  PubMed  CAS  Google Scholar 

  • Schumann U, Ayliffe M, Kazan K, Wang M (2010) RNA silencing in fungi. Front Biol 5:478–494

    Article  CAS  Google Scholar 

  • Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes P, Lemaux PG (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:937–950

    Article  PubMed  CAS  Google Scholar 

  • Somers DA, Makarevitch I (2004) Transgene integration in plants: poking or patching holes in promiscuous genomes. Curr Opin Biotechnol 15:126–131

    Article  PubMed  CAS  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Egawa H, Ikeda JE, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361

    Article  PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya NM, Zhu Q-H, Zhou X-R, Eamens AL, Hoque MS, Ramm K, Shivakkumar R, Smith KF, Pan S-T, Li S, Peng K, Kim SJ, Dennis ES (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326–1341

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Waterhouse PM (2000) High-efficiency silencing of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol Biol 43:67–82

    Article  PubMed  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829. doi:10.1371/journal.pone.0001829

    Article  PubMed  Google Scholar 

  • Waterhouse PM, Graham MW, Wang M (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective, and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Warkentin D, Sun B, Zhong H, Sticklen M (1996) Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor Appl Genet 92:752–761

    Article  CAS  Google Scholar 

  • Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47:811–826

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the USDA-ARS CRIS project 5366-21000-028. The USDA-ARS is an equal opportunity employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Bregitzer.

Additional information

Editor: Todd Jones

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bregitzer, P., Brown, R.H. Long-term assessment of transgene behavior in barley: Ds-mediated delivery of bar results in robust, stable, and heritable expression. In Vitro Cell.Dev.Biol.-Plant 49, 231–239 (2013). https://doi.org/10.1007/s11627-013-9507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9507-y

Keywords

Navigation