Skip to main content

Cryopreservation

  • Chapter
  • First Online:
Conservation of Tropical Plant Species

Abstract

Cryopreservation is employed for long-term conservation of plant biodiversity including species with recalcitrant and intermediate seeds, vegetatively propagated plants, rare and endangered species and biotechnology products. New, vitrification-based cryopreservation techniques have been developed over the last 20 years, which allow cryopreserving a large range of plant species, both from temperate and tropical origin. Cryopreservation is much more advanced for vegetatively propagated plant species than for recalcitrant and intermediate seed species. Only a limited number of examples of large scale, routine application of cryopreservation is found in the case of tropical plant species, including coffee, cocoa, Musa and cassava. Fundamental research aiming at improving our understanding of physical and biological mechanisms related to tolerance of plants to dehydration and cryopreservation is carried out by an increasing number of research groups worldwide. It is hoped that this will allow cryopreservation to become more broadly applied for long-term conservation of biodiversity of tropical plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assy-Bah B, Engelmann F (1992) Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. Cryo Lett 13:117–126

    Google Scholar 

  • Berjak P, Farrant JM, Mycock DJ, Pammenter NW (1989) Homoiohydrous (recalcitrant) seeds: the enigma of their desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186:249–261

    Google Scholar 

  • Bonnart R, Volk GM (2010) Increased efficiency using the encapsulation-dehydration cryopreservation technique for Arabidopsis thaliana. Cryo Lett 31:95–100

    CAS  Google Scholar 

  • Brison M, de Boucaud MT, Pierronet A, Dosba F (1997) Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci 123:189–196

    Article  CAS  Google Scholar 

  • Bunn E, Turner SR, Panaia M, Dixon KW (2007) The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust J Bot 55:345–355

    Article  Google Scholar 

  • Chin HF (1988) Recalcitrant seeds: a status report. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Chin HF, Roberts EH (1980) Recalcitrant crop seeds. Tropical Press Sdn. Bhd, Kuala Lumpur

    Google Scholar 

  • Dulloo ME, Ebert AW, Dussert S, Gotor E, Astorga C, Vasquez N, Rakotomalala JJ, Rabemiafara A, Eira M, Bellachew B, Omondi C, Engelmann F, Anthony F, Watts J, Qamar Z, Snook L (2009) Cost efficiency of cryopreservation as a long term conservation method for coffee genetic resources. Crop Sci 49:2123–2138

    Article  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12:352–355

    Article  CAS  Google Scholar 

  • Dussert S, Engelmann F (2006) New determinants of coffee (Coffea arabica L.) seed tolerance to liquid nitrogen exposure. Cryo Lett 27:169–178

    CAS  Google Scholar 

  • Dussert S, Chabrillange N, Anthony F, Engelmann F, Recalt C, Hamon S (1997) Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep 16:344–348

    CAS  Google Scholar 

  • Dussert S, Chabrillange N, Roquelin G, Engelmann F, Lopez M, Hamon S (2001) Tolerance of coffee (Coffea spp.) seeds to ultra-low temperature exposure in relation to calorimetric properties of tissue water, lipid composition and cooling procedure. Physiol Plant 112:495–505

    Article  PubMed  CAS  Google Scholar 

  • Ellis RH, Hong T, Roberts EH (1990) An intermediate category of seed storage behaviour? I. Coffee. J Exp Bot 41:1167–1174

    Article  Google Scholar 

  • Ellis RH, Hong T, Roberts EH, Soetisna U (1991) Seed storage behaviour in Elaeis guineensis. Seed Sci Res 1:99–104

    Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm—a review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F (1997a) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wellingford, pp 119–162

    Google Scholar 

  • Engelmann F (1997b) Importance of desiccation for the cryopreservation of recalcitrant seed and vegetatively propagated species. Plant Genet Res Newsl 112:9–18

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS/IPGRI, Tsukuba/Rome, pp 8–20

    Google Scholar 

  • Engelmann F (2009) Use of biotechnologies for conserving plant biodiversity. Acta Hort 812:63–82

    CAS  Google Scholar 

  • Engelmann F (2012) Germplasm collection, storage and preservation. In: Altman A, Hazegawa PM (eds) Plant biotechnology 2010: basic aspects and agricultural implications, Elsevier, pp 255–268

    Google Scholar 

  • Engelmann F, Engels JMM (2002) Technologies and strategies for ex situ conservation. In: Engels JMM, Rao VR, Brown ADH, Jackson MT (eds) Managing plant genetic diversity. CABI/IPGRI, Wallingford/Rome, pp 89–104

    Google Scholar 

  • Engelmann F, Gonzalez-Arnao MT, Wu WJ, Escobar RE (2008) Development of encapsulation-dehydration. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 59–76

    Chapter  Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  PubMed  CAS  Google Scholar 

  • FAO (1996) Report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2009) Draft second report on the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Florin B, Brulard E, Lepage B (1999) Establishment of a cryopreserved coffee germplasm bank. In: Abstracts of the CRYO’09 annual meeting of the society for cryobiology, Tsukuba, 21–26 Jul 2009, p 67

    Google Scholar 

  • George EF (1996) Plant propagation by tissue culture. Part 2—in practice, 2nd edn. Exegetics, Edington

    Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. Cryo Lett 27:155–168

    CAS  Google Scholar 

  • Gonzalez-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Org Cult 92:1–13

    Article  Google Scholar 

  • Helliot B, Panis B, Poumay Y, Swennen R, Lepoivre P, Frison E (2002) Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep 12:1117–1122

    Google Scholar 

  • Hor YL, Kim YJ, Ugap A, Chabrillange N, Sinniah UR, Engelmann F, Dussert S (2005) Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Ann Bot 95:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer, Dordrecht, pp 195–230

    Google Scholar 

  • Kim HH, Lee YG, Ko HC, Park SU, Gwag JG, Cho EG, Engelmann F (2009a) Development of alternative loading solutions in droplet-vitrification procedures. Cryo Lett 30:291–299

    CAS  Google Scholar 

  • Kim HH, Lee YG, Shin DJ, Kim T, Cho EG, Engelmann F (2009b) Development of alternative plant vitrification solutions in droplet-vitrification procedures. Cryo Lett 30:320–334

    CAS  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446

    Article  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and applications. Amer J Physiol 247:C125–C142, Cell Physiol 16

    PubMed  CAS  Google Scholar 

  • Meryman HT, Williams RJ, Douglas MSJ (1977) Freezing injury from solution effects and its prevention by natural or artificial cryoprotection. Cryobiology 14:287–302

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa S, Sakai A, Amano AY, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Panis B, Strosse H, Van den Henda S, Swennen R (2002) Sucrose preculture to simplify cryopreservation of banana meristem cultures. Cryo Lett 23:375–384

    CAS  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Panis B, Van den houwe I, Piette B, Swennen R (2007) Cryopreservation of the banana germplasm collection at the ITC (INIBAP Transit centre). In: Proceedings of the 1st meeting of COST 871 working group 2: technology, application and validation of plant cryopreservation, Florence, 10–13 May 2007, pp 34–35

    Google Scholar 

  • Popova E, Kim HH, Paek KY (2010) Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Sci Hortic 124:522–528

    Article  CAS  Google Scholar 

  • Reed BM, Uchendu E (2008) Controlled rate cooling. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 77–92

    Chapter  Google Scholar 

  • Roberts HF (1973) Predicting the viability of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryo Lett 28:151–172

    CAS  Google Scholar 

  • Sakai A, Nishiyama Y (1978) Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. Hortscience 13:225–227

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama IE (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 33–58

    Chapter  Google Scholar 

  • Towill LE, Ellis DD (2008) Cryopreservation of dormant buds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 421–442

    Chapter  Google Scholar 

  • Uragami A, Sakai A, Magai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9:328–331

    Article  Google Scholar 

  • Wang Q, Panis B, Engelmann F, Lambardi M, Valkonen JPT (2008) Elimination of plant pathogens by cryotherapy of shoot tips: a review. Ann Appl Biol 154. http://www3.interscience.wiley.com/journal/119879031/issue. Accessed on 15 Nov 2011

  • Wetten A, Adu-Gyamfi R, Rodriguez-Lopez C (2011) Apples and cocoa: distinct challenges in cryopreservation of two germplasm collections. In: COST action 871 cryopreservation of crop species in Europe final meeting, Agrocampus Ouest INPH, Angers, 8–11 Feb 2011, pp 10–11

    Google Scholar 

  • Withers LA, Engelmann F (1998) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Marcel Dekker, New York, pp 57–88

    Google Scholar 

  • Withers LA, Engels JMM (1990) The test tube genebank—a safe alternative to field conservation. IBPGR Newsl Asia Pac 3:1–2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Engelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Engelmann, F., Dussert, S. (2013). Cryopreservation. In: Normah, M., Chin, H., Reed, B. (eds) Conservation of Tropical Plant Species. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3776-5_6

Download citation

Publish with us

Policies and ethics