Skip to main content
Log in

In vitro propagation and agronomic performance of regenerated chili pepper (Capsicum spp.) plants from commercially important genotypes

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The application of modern biotechnology for improvement of chili pepper productivity requires an efficient in vitro plant regeneration protocol. In this study, a reliable protocol was developed for the in vitro regeneration of four types of chili, Capsicum annuum var. annuum (Jalapeño and Serrano), C. annuum var. glabriusculum/aviculare (Piquin), and C. chinense (Habanero) by direct organogenesis using three different explants (cotyledon, hypocotyls, and embryo) and three induction media. All evaluated culture media promoted the formation of adventitious shoots. When embryos or hypocotyls were used as explants, morphologically normal adventitious shoots developed, while culturing cotyledons resulted in nonelongating rosette-shaped shoots. The highest in vitro regeneration efficiency (14.6 shoots per explant) was achieved when Habanero chili hypocotyls were grown on Murashige and Skoog medium containing 1.7 μM indole-3-acetic acid and 22.2 μM N6-benzyladenine. This regeneration rate is higher than that obtained in previous reports. Regenerated plants were ready to be transferred to the greenhouse 13 wk after the explant culture. An evaluation carried out under greenhouse conditions showed differences in agronomic performance between in vitro regenerated plants and plants developed from seeds with the magnitude of the differences depending on the genotype being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Agrawal S.; Chandra N.; Kothari S.-L. Plant regeneration in tissue cultures of pepper (Capsicum annuum L. cv. Mathania). Plant Cell Tiss. Org. Cult. 16: 47–55; 1989. doi:10.1007/BF00044071.

    Article  Google Scholar 

  • Aguado-Santacruz G. A.; Martínez-Castillo A.; Moreno-Gómez B.; Peña-Mosqueda D. Cultivo de tejidos vegetales. In: Aguado-Santacruz G. A. (ed) XVI Jornada de ingeniería bioquímica. INIFAP, Unidad de Biotecnología-Instituto Tecnológico de Celaya, Celaya, Gto. Mex, p 51 p; 2004.

    Google Scholar 

  • Amzad H.-M.; Konisho K.; Minami M.; Nemoto K. Somaclonal variation of regenerated plants in chili pepper (Capsicum annuum L). Euphytica 130: 233–239; 2003. doi:10.1023/A:1022856725794.

    Article  Google Scholar 

  • Basra A. S. Seed quality; basic mechanisms and agricultural implications. Food Products, New York1995.

    Google Scholar 

  • Binzel M.-L.; Sankhla N.; Joshi S.; Sankhla D. In vitro regeneration in chili pepper (Capsicum annuum L.) from ‘half-seed explants’. Plant Growth Regul. 20: 287–293; 1996. doi:10.1007/BF00043320.

    Article  CAS  Google Scholar 

  • Cárdenas-Avila M.-L.; Verde-Star J.; Villarreal J.; Valadés M.-C.; Maiti R.-K.; Morales M.-R In vitro tissue culture of wild chili «chile piquín» (Capsicum annuum L. var. aviculare (Dierb.) D’Arcy & Eshbaugh): an alternative method for propagation. Phyton 60: 99–102; 1997.

    Google Scholar 

  • Cardone S.; Olmos S.; Echenique V Métodos para generar variabilidad. In: Echenique V.; Rubinstein C.; Mroginski L. (eds) Biotecnología y mejoramiento vegetal. INTA, Argentina, pp 81–96; 2004.

    Google Scholar 

  • Castillo-Martínez, C.-R. Transformación genética de Paulonia elongata mediada por Agrobacterium tumefaciens y por biobalistica. Ph. D. thesis, Colegio de Postgraduados, México; 2007.

  • Dabauza M.; Peña L High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regul. 33: 221–229; 2001. doi:10.1023/A:1017585407870.

    Article  CAS  Google Scholar 

  • Deepu M.; Doijode S.-D.; Reddy K.-M Correlation and path coefficient analysis in five species of Capsicum. Capsicum Eggplant Newsl. 23: 57–60; 2004.

    Google Scholar 

  • Estrada-Luna A.-A.; Davies F.-T.; Egilla J.-N Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. Plant Cell Tiss. Org. Cult. 66: 17–24; 2001. doi:10.1023/A:1010606430060.

    Article  CAS  Google Scholar 

  • Ezura H Micropropagation of Capsicum species (pepper). In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry high-tech and micropropagation, vol 39. Springer, Heidelberg, pp 48–59; 1997.

    Google Scholar 

  • FAOSTAT. Food and Agriculture Organization of the United Nations. Database results. http://faostat.fao.org. Cited 18 Jun 2008; 2006.

  • Hernández-Verdugo S.; Guevara-González R.-G.; Rivera-Bustamante R.-F.; Vázquez-Yanez C.; Oyama K Los parientes silvestres del chile (Capsicum spp.) como recursos genéticos. Bol. Soc. Bot. 62: 171–181; 1998.

    Google Scholar 

  • Husain S.; Jain A.; Kothari S.-L. Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Capsicum annuum L. Plant Cell Rep. 19: 64–68; 1999. doi:10.1007/s002990050711.

    Article  CAS  Google Scholar 

  • Joshi A.; Kothari S.-L High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell Tiss. Org. Cult. 88: 127–133; 2007. doi:10.1007/s11240-006-9171-6.

    Article  CAS  Google Scholar 

  • Kaparakis G.; Alderson P.-G Differential callus type formation by auxins and cytokinin in in vitro cultures of pepper (Capsicum annuum L.). Plant BioSyst. 137: 275–280; 2003. doi:10.1080/11263500312331351521.

    Google Scholar 

  • Kelly A. F Seed production of agricultural crops. Longman Scientific and Technical. Wiley, New York1988.

    Google Scholar 

  • Kintzios S.; Drossopoulos J.-B.; Lymperopoulos C.-H Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from leaves of chilli pepper. Plant Cell Tiss. Org. Cult. 67: 55–62; 2001. doi:10.1023/A:1011610413177.

    Article  CAS  Google Scholar 

  • Kumar B.-K.; Munshi A.-D.; Joshi S.; Kaur C.-H Correlation and path coefficient analysis for yield and biochemical characters in chilli (Capsicum annuum L.). Capsicum Eggplant Newsl. 22: 67–70; 2003.

    Google Scholar 

  • Kumar V.; Gururaj H.-B.; Narasimha B.-C.; Giridhar P.; Ravishankar G.-A. Direct shoot organogenesis on shoot apex from seedling explants of Capsicum annuum L. Sci. Hort. 106: 237–246; 2005. doi:10.1016/j.scienta.2005.02.021.

    Article  CAS  Google Scholar 

  • López-Encinas, C. Juvenilidad y rejuvenecimiento de plantas cultivadas in vitro. http://www.encuentros.uma.es/encuentros27/27juvenil.html. Cited 13 Jul 2007; 2007.

  • López-Puc G.; Canto-Flick A.; Barredo-Pool F.; Zapata-Castillo P.; Montalvo-Peniche M.-C.; Barahona-Pérez F.; Santana-Buzzy N Direct somatic embryogenesis: a highly efficient protocol for in vitro regeneration of habanero pepper (Capsicum chinense jacq.). Hort. Sci. 41: 1645–1650; 2006.

    Google Scholar 

  • Murashige T.; Skoog F A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Nandadevi; Hosamani R.-M Variability, correlation and path analysis in kharif-grown chilli (Capsicum annuum L.) genotypes for different characters. Capsicum Eggplant Newsl. 22: 43–46; 2003.

    Google Scholar 

  • Nuez F.; Gil-Ortega R.; Costa J. El cultivo de pimientos, chiles y ajíes. Mundi-Prensa, México D.F1996.

    Google Scholar 

  • Ochoa-Alejo N.; Ireta-Moreno L Cultivar differences in shoot-forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro. Sci. Hort. 42: 21–28; 1990. doi:10.1016/0304-4238(90)90144-4.

    Article  Google Scholar 

  • Peddaboina V.; Thamidala C.; Subhash K Selection of atrazine-resistant plants by in vitro mutagenesis in pepper (Capsicum annuum). Plant Cell Tiss. Org. Cult. 83: 75–82; 2005. doi:10.1007/s11240-005-2678-4.

    Article  Google Scholar 

  • Pinzón, L. Aspectos fisiológicos, anatómicos y morfológicos de la recalcitrancia del cultivo in vitro del chile habanero (Capsicum chinense Jacq.). Ph. D. thesis, Colegio de Postgraduados, México; 2007.

  • Prakash A.-H.; Sankara K.; Kumar M Plant regeneration from protoplasts of Capsicum annuum L. cv. California Wonder. J. Biosci. 22: 339–344; 1997. doi:10.1007/BF02703236.

    Article  CAS  Google Scholar 

  • Ramírez-Malagón R.; Ochoa-Alejo N An improved and reliable chili pepper (Capsicum annuum L.) plant regeneration method. Plant Cell Rep. 16: 226–231; 1996. doi:10.1007/BF01890873.

    Article  Google Scholar 

  • Robledo-Paz A.; Carrillo-Castañeda G Regeneración in vitro de plantas de chile (Capsicum annuum L) mediante cultivo de cotiledones e hipocótilos. Rev. Fitotec. Mex. 27: 121–126; 2004.

    Google Scholar 

  • Sanatombi K.; Sharma G.-J In vitro regeneration and mass multiplication of Capsicum annuum L. Agri. Environ. 4: 205–208; 2006.

    Google Scholar 

  • Santana-Buzzy N.; Canto-Flick A.; Barahona-Pérez F.; Montalvo-Peniche M.-C.; Zapata-Castillo P.-Y.; Solís-Ruíz A.; Zaldívar-Collí A.; Gutiérrez-Alonso O.; Miranda-Ham M.-L Regeneration of habanero pepper (Capsicum chinense Jacq.) via organogenesis. Hort. Sci. 40: 1829–1831; 2005.

    Google Scholar 

  • Santana-Buzzy N.; Canto-Flick A.; Iglesias-Andreu L.-G.; Montalvo-Peniche M.-C.; López-Puc G.; Barahona-Pérez F Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. Hort. Sci. 41: 405–409; 2006.

    CAS  Google Scholar 

  • Sripichit P.; Nawata E.; Shigenaga S In vitro shoot-forming capacity of cotyledon explants in red pepper (Capsicum annuum L. cv. Yatsufusa). Jap. J. Breed 37: 133–142; 1987.

    Google Scholar 

  • Steel R.-D.; Torrie J. H. Bioestadistica: principios y procedimientos. McGraw-Hill, México1992.

    Google Scholar 

  • Steinitz B.; Küsek M.; Tabib Y.; Paran I.; Zelcer A. Pepper (Capsicum annuum L.) regenerants obtained by direct somatic embryogenesis fail to develop a shoot. In Vitro Cell Dev. Biol. Plant 39: 296–303; 2003. doi:10.1079/IVP2002405.

    Article  CAS  Google Scholar 

  • Valera-Montero L.; Ochoa-Alejo N A novel approach for chili pepper (Capsicum annuum L.) plant regeneration: shoot induction in rooted hypocotyls. Plant Sci. 84: 215–219; 1992. doi:10.1016/0168-9452(92)90137-B.

    Article  CAS  Google Scholar 

  • Valera-Montero L.; Phillips G.-C Long-lasting Capsicum baccatum ‘organogenic callus’ formation. In Vitro Cell Dev. Biol. Plant 41: 470–476; 2005. doi:10.1079/IVP2005648.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express their gratitude to The National Council for Science and Technology (CONACYT, Mexico) for the scholarship awarded to M.G.V.B. (number 184879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandrina Robledo-Paz.

Additional information

Editor: N. Ochoa-Alejo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valadez-Bustos, M.G., Aguado-Santacruz, G.A., Carrillo-Castañeda, G. et al. In vitro propagation and agronomic performance of regenerated chili pepper (Capsicum spp.) plants from commercially important genotypes. In Vitro Cell.Dev.Biol.-Plant 45, 650–658 (2009). https://doi.org/10.1007/s11627-009-9193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9193-y

Keywords

Navigation