Skip to main content
Log in

In vitro selection for salt tolerance in crop plants: Theoretical and practical considerations

  • Invited Review
  • Published:
In Vitro – Plant Aims and scope Submit manuscript

Summary

In recent years attempts have been made to supplement traditional breeding for the production of salt-tolerant plants with variability existing in cell culture. The potential causes suggested as an explanation for the limited success of the in vitro approach include: a) lack, or loss during selection, of regeneration capability; b) the development of epigenetically adapted cells; c) lack of correlation between the mechanisms of tolerance operating in cultured cells and mechanisms that operate in cells in the intact plant; and d) multigenicity of salt tolerance. The recent successful production of healthy, fertile, and genetically stable salt-tolerant regenerants from cells obtained from highly morphogenic explants which are selected early in culture (using one-step or short-term strategies) for salt tolerance, together with the demonstration that salt-sensitive plants can become tolerant by mutations in one or few genes, suggest that some of the potential limitations can be overcome and that some of them may not exist at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, G. H. Inheritance of the capacity for chloride inclusion and exclusion by soybean. Crop. Sci. 9:697–698; 1969.

    Article  Google Scholar 

  • Alldridge, N. A. Anomalous vessel elements in wilty dwarf tomato. Bot. Gaz. 125:138–142; 1964.

    Article  Google Scholar 

  • Amzallag, G. N.; Lerner, H. R.; Poljakoff-Mayber, A. Induction of increased salt tolerance inSorghum bicolor by NaCl pretreatment. J. Exp. Bot. 71:29–34; 1990.

    Article  Google Scholar 

  • Ball, S. G. Molecular basis of somaclonal variation. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 11. Somaclonal variation in crop improvements. Berlin: Springer-Verlag; 1990: 134–152.

    Google Scholar 

  • Blum, A. Plant breeding for stress environments. Boca Raton, FL: CRC Press; 1988.

    Google Scholar 

  • Bressan, R. A.; Singh, N. K.; Handa, A. K., et al. Stable and unstable tolerance to NaCl in cultured tobacco cells. In: Freeling, M., ed. Plant genetics: proceedings of the third annual ARCO plant cell research institute—UCLA symposium on plant biology. New York: A. R. Liss; 1985;755–769.

    Google Scholar 

  • Chandler, S. F.; Thorpe, T. A. Variation from plant tissue cultures: biotechnological application to improving salinity tolerance. Biotechnol. Adv. 4:117–135; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, S. F.; Vasil, I. K. Selection and characterization of NaCl tolerant cells from embryogenic cultures ofPennisetam purpureum Schum. (Napir grass). Plant Sci. Lett. 37:157–164; 1984.

    Article  CAS  Google Scholar 

  • Cheeseman, J. M. Mechanisms of salinity tolerance in plants. Plant Physiol. 87:547–550; 1988.

    PubMed  CAS  Google Scholar 

  • Collin, H. A.; Dix, P. J. Culture systems and selection procedures. In: Dix, P. J., ed. Plant cell line selection procedures and applications. New York: VCH Weinheim; 1990:3–18.

    Google Scholar 

  • Cushman, J. C.; DeRocher, E. J.; Bohnert, H. J. Gene expression during adaptation to salt stress. In: Katterman, F. R., ed. Environmental injury to plants. San Diego, CA: Academic Press; 1990: 173–203.

    Google Scholar 

  • Dix, P. J. The role of mutant cell lines in studies on environmental stress tolerance: an assessment. Plant J. 3:309–313; 1993.

    CAS  Google Scholar 

  • Dracup, M. Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Aust. J. Plant Physiol. 18:1–15; 1991.

    CAS  Google Scholar 

  • Epstein, E.; Rains, D. W. Advances in salt tolerance. Plant Soil 99:17–29; 1987.

    Article  CAS  Google Scholar 

  • Flowers, T. J.; Lachno, D. R.; Flowers, S. A., et al. Some effects of sodium chloride on cells of rice culturedin vitro. Plant Sci. Lett. 39:205–211; 1985.

    Article  CAS  Google Scholar 

  • Forster, B. P. Genetic engineering for stress tolerance in theTriticeae. Proc. R. Soc. Edinb. 99B:89–106; 1992.

    Google Scholar 

  • Forster, B. P.; Phillips, M. S.; Miller, T. E., et al. Chromosome location of genes controlling tolerance to salt (NaCl) and vigour inHordeum vulgare andH. chilense. Heredity 65:99–107; 1990.

    Google Scholar 

  • Forster, B. P.; Pakniyat, H.; Macaulay, W., et al. Variation in the leaf sodium content of theHordeum vulgare (barley) cultivar Maythorpe and its derived mutant cv. Golden Promise. Heredity 73:249–253; 1994.

    CAS  Google Scholar 

  • Freytag, A. M.; Wrather, J. A.; Erichsen, A. W. Salt tolerance sugarbeet progeny from tissue cultures challenged with multiple salts. Plant Cell Rep. 8:647–650; 1990.

    Article  CAS  Google Scholar 

  • Futuyma, D. J. Evolutionary biology, 2nd ed. Sunderland, MA: Sinauer Associates, Inc. Publishers; 1986.

    Google Scholar 

  • Galiba, G.; Simon-Sarkadi, L.; Kocsy, G., et al. Possible chromosomal location of genes determining the osmoregulation of wheat. Theor. Appl. Genet. 85:415–418; 1992.

    Article  Google Scholar 

  • Gulati, A.; Jaiwal, P. K. Selection and characterization of mannitol-tolerant callus lines ofVigna radiata (L.) Wilczak. Plant Cell Tissue Organ Cult. 34:35–41; 1993.

    Article  CAS  Google Scholar 

  • Hagemann, M.; Zuther, E. Selection and characterization of mutants ofCyanobacterium Synechocystis sp. PCC 6803 unable to tolerate high salt concentrations. Arch. Microbiol. 158:429–434; 1992.

    Article  CAS  Google Scholar 

  • Hasegawa, P. M.; Binzel, M. L.; Reuveni, M., et al. Physiological and molecular mechanisms of ion accumulations and compartmentations contributing to salt adaptation of plant cells. In: Bennett, A. B.; O'Neill, S. D., eds. Horticultural biotechnology. New York: Wiley-Liss; 1990:295–304.

    Google Scholar 

  • Hickok, L. G.; Vogelien, D. L.; Varne, T. R. Selection of a mutation conferring high NaCl tolerance to gametophytes of Ceratopteris. Theor. Appl. Genet. 81:293–300; 1991.

    Article  Google Scholar 

  • Hoffmann, A. A.; Parsons, P. A. Evolutionary genetics and environmental stress. Oxford, England: Oxford Science Publications; 1991.

    Google Scholar 

  • Hurkman, W. J. Effect of salt stress on plant gene expression: a review. Plant Soil 46:145–151; 1992.

    Article  Google Scholar 

  • Ibrahim, K. M.; Collins, J. C.; Collin, H. A. Characterization of progeny ofColeus blumei following anin vitro selection for salt tolerance. Plant Cell Tissue Organ Cult. 28:139–145; 1992.

    Article  CAS  Google Scholar 

  • Jia, Z. P.; McCullough, N.; Martel, R., et al. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J. 11:1631–1640; 1992.

    PubMed  CAS  Google Scholar 

  • Jain, R. K.; Jain, S.; Nainawatee, H. S., et al. Salt-tolerance inBrassica juncea L. I.In vitro selection, agronomic evaluation and genetic stability. Euphytica 48:141–152; 1990.

    Article  Google Scholar 

  • Kirti, P. B.; Hadi, S.; Kumar, P. A., et al. Production of sodium-chloride-tolerantBrassica juncea plants byin vitro selection at the somatic embryo level. Theor. Appl. Genet. 83:233–237; 1991.

    Article  Google Scholar 

  • Koornneef, M.; Jorna, M. L.; Brinkhorst-van der Swan, D. L. C., et al. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberelin sensitive lines ofArabidopsis thaliana (L.) Heyah. Theor. Appl. Genet. 61: 385–393; 1982.

    CAS  Google Scholar 

  • Kueh, J. S. H.; Bright, S. W. J. Biochemical and genetical analyses of three proline-accumulating barley mutants. Plant Sci. Lett. 27: 233–241; 1982.

    Article  CAS  Google Scholar 

  • Langridge, J. An osmotic mutant ofArabidopsis thaliana. Aust. J. Biol. Sci. 11:457–470; 1958.

    CAS  Google Scholar 

  • Lebrun, L.; Rajasekaran, K.; Mullins, M. G. Selectionin vitro for NaCl-tolerance inVitis rupestris Scheele. Ann. Bot. 56:733–739; 1985.

    Google Scholar 

  • Lehle, F. R.; Kahn, R. A.Arabidopsis mutant with enhanced NaCl tolerance. In: Schweizer, D.; Peuker, K.; Loidl, J., eds. Fourth Intern. Conf.Arabidopsis Research, Inst. Cytology and Genetics, University of Vienna, Vienna, 1990. [Published by the meeting organizers.]

  • Lu, D. B.; Scars, R. G.; Paulsen, G. M. Increasing stress resistance byin vitro selection for abscisic acid insensitivity in wheat. Crop. Sci. 29:939–943; 1989.

    Article  CAS  Google Scholar 

  • Macnair, M. R.; Cumbs, Q. J.; Meharg, A. A. The genetics of arsenate tolerance in Yorkshire fog,Holcus lanatus L. Heredity 69:325–335; 1992.

    CAS  Google Scholar 

  • Mahon, J. D. Limitations to the use of physiological variability in plant breeding. Can. J. Plant Sci. 63:11–21; 1983.

    Article  Google Scholar 

  • McCue, K. F.; Hanson, A. D. Drought and salt tolerance: towards understanding and application. Trends Biotech. 8:358–362; 1990.

    Article  CAS  Google Scholar 

  • McHugen, A.; Swartz, M. A tissue culture derived salt-tolerant line of flax (Linum usitatissimum). J. Plant Physiol. 117:109–117; 1984.

    Google Scholar 

  • McNeilly, T. Selection and breeding for salinity tolerance in cross species. A case for optimism? Acta Oecol. 11:595–610; 1990.

    Google Scholar 

  • Meredith, C. P. Selecting better crops from cultured cells. In: Gustafson, J. P., ed. Gene manipulation in plant improvement. 16th Stadler Genetics Symposium. New York: Plenum Press; 1984:503–528.

    Google Scholar 

  • Morgan, J. M. A gene controlling differences in osmoregulation in wheat. Aust. J. Plant Physiol. 18:249–257; 1991.

    Article  Google Scholar 

  • Nabors, M. W. Increasing salt and drought tolerance of crop plants. In: Randall, D. D.; Blevins, D. B.; Larson, R. L., et al. eds. Current topics in plant biochemistry and physiology, vol. 2. Columbia, MO: University of Missouri; 1983:167–186.

    Google Scholar 

  • Nabors, M. W. Environmental stress resistance. In: Dix, P. J., ed. Plant cell line selection procedures and applications. New York: VCH Weinheim; 1990:167–186.

    Google Scholar 

  • Noble, C. L.; Rogers, M. E. Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 146:99–107; 1992.

    Article  CAS  Google Scholar 

  • Norlyn, J. D.; Epstein, E. Variability in salt tolerance of four Triticale lines at germination and emergence. Crop. Sci. 24:1090–1092; 1984.

    Article  Google Scholar 

  • O'Connor, B. J.; Robertson, A. J.; Gusta, L. V. Differential stress tolerance and cross adaptation in a somaclonal variant of flax. J. Plant Physiol. 139:32–36; 1991.

    Google Scholar 

  • Oertli, J. J. Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochemica 12:461–469; 1968.

    Google Scholar 

  • Parry, A. D.; Blonstein, A. D.; Babiano, M. J., et al. Abscisic-acid metabolism in a wilty mutant ofNicotiana plumbaginifolia. Planta 183:237–243; 1991.

    Article  CAS  Google Scholar 

  • Postlethwait, S. N.; Nelson, O. E. A chemically wilted mutant of maize. Am. J. Bot. 44:628–633; 1957.

    Article  Google Scholar 

  • Quarrie, S. A. Droopy: a wilty mutant of potato deficient in abscisic acid. Plant Cell Environ. 5:23–26; 1982.

    CAS  Google Scholar 

  • Rains, D. W.; Croughan, S. S.; Croughan, T. P. Isolation and characterization of mutant cell lines and plants: salt tolerance. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants, vol. 3. Orlando, FL: Academic Press; 1986:537–547.

    Google Scholar 

  • Rathinasabapathi, B.; Gage, D. A.; Mackill, D. J., et al. Cultivated and wild species do not accumulate glycinebitaine due to defficiencies in two biosynthetic steps. Crop. Sci. 33:534–538; 1993.

    Article  CAS  Google Scholar 

  • Saleki, R.; Young, P. G.; Lefebvre, D. D. Mutants ofArabidopsis thaliana capable of germination under saline conditions. Plant Physiol. 101:839–845; 1993.

    PubMed  CAS  Google Scholar 

  • Saranga, Y.; Cahaner, A.; Zamir, D., et al. Breeding tomatoes for salt tolerance: inheritance of salt tolerance and related traits in interspecific population. Theor Appl. Genet. 84:390–396; 1992.

    Article  Google Scholar 

  • Scandalios, I. G., ed. Genomic responses to environmental stress: advances in genetics, vol. 28. San Diego, CA: Academic Press; 1990.

    Google Scholar 

  • Shannon, M. C. Principles and strategies in breeding for high salt tolerance. Plant Soil 89:227–241; 1985.

    Article  Google Scholar 

  • Spiker, S. Plant chromatin structure. Ann. Rev. Plant Physiol. 36:235–253; 1985.

    CAS  Google Scholar 

  • Sumaryati, S.; Negrutin, I.; Jacobs, M. Characterization and regeneration of salt- and water-stress mutants from protoplast culture ofNicotiana plumbaginifolia (Viviani). Theor. Appl. Genet. 83:613–619; 1992.

    Article  CAS  Google Scholar 

  • Sutka, J.; Snape, J. W. Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44; 1989.

    Article  Google Scholar 

  • Sykes, S. R. The inheritance of salt exclusion in woody perennial fruit species. Plant Soil 146:123–129; 1992.

    Article  CAS  Google Scholar 

  • Taeb, M.; Koebner, R. M. D.; Forster, B. P., et al. Association between genes controlling flowering time and shoot sodium accumulation in theTriticeae. Plant Soil 146:117–121; 1992.

    Article  CAS  Google Scholar 

  • Tal, M. Physiological genetics of salt resistance in higher plants: studies on the level of the whole plant and isolated organs, tissues and cells. In: Staples, R. C.; Toenniessen, G. H., eds. Salinity tolerance on plants. Strategies for crop improvement. New York: Wiley & Sons; 1984:301–320.

    Google Scholar 

  • Tal, M. Genetics of salt tolerance in higher plants: theoretical and practical considerations. Plant Soil 89:199–226; 1985.

    Article  Google Scholar 

  • Tal, M. Somaclonal variation for salt resistance. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 11. Somaclonal variation in crop improvement. Berlin: Springer-Verlag; 1990: 236–257.

    Google Scholar 

  • Tal, M.In vitro methodology for increasing salt tolerance in crop plants. Acta Hortic. 336:69–79; 1993.

    Google Scholar 

  • Tal, M.; Benzioni, A. Ion imbalance inCapsicum annuum, Scabrous diminutive, a wilty mutant of pepper. I. Sodium fluxes. J. Exp. Bot. 28:1337–2341; 1977.

    Article  CAS  Google Scholar 

  • Tal, M.; Nevo, Y. Abnormal stomatal behavior and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8:291–300; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Tal, M.; Witztum, A.; Shifriess, C. Abnormal stomatal behavior and leaf anatomy inCapsicum annuum, scabrous diminutive, a wilty mutant of pepper. Ann. Bot. 38:983–988; 1974.

    Google Scholar 

  • Tal, M.; Eshel, A.; Witztum, A. Abnormal stomatal behaviour and ion imbalance inCapsicum scabrous diminutive. J. Exp. Bot. 27:953–960; 1976.

    Article  CAS  Google Scholar 

  • Tarczynski, M. C.; Jensen, R. G.; Bohnert, H. J. Stress protection of transgenic tobacco by production of the osmolyte, mannitol. Science 259:508–510; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Vajrabhaya, M.; Thanapaisai, T.; Vajrabhaya, T. Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep. 8:411–414; 1989.

    Article  Google Scholar 

  • Walker-Simmons, M.; Kudrna, D. A.; Warner, R. L. Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley. Plant Physiol. 90:728–733; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. L.; Donkin, M. E.; Martin, E. S. The physiology of a wilty pea: abscisic acid production under water stress. J. Exp. Bot 35:1222–1232; 1984.

    Article  CAS  Google Scholar 

  • Winicov, I. Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep. 10:561–564; 1991.

    Article  CAS  Google Scholar 

  • Winicov, I. Gene expression in relation to salt tolerance. In: Basra, A. S., ed. Stress-induced gene expression in plants. Harwood: Academic Publishers; 1993:61–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tal, M. In vitro selection for salt tolerance in crop plants: Theoretical and practical considerations. In Vitro Cell.Dev.Biol.–Plant 30, 175–180 (1994). https://doi.org/10.1007/BF02823028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823028

Key words

Navigation