Skip to main content
Log in

In vitro analysis of venom from the wasp Nasonia vitripennis: Susceptibility of different cell lines and venom-induced changes in plasma membrane permeability

  • Infectious Disease/Cellular Pathology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The lethal effects of crude venom prepared from the ectoparasitic wasp Nasonia vitripennis were examined with cultured cells from six insect and two vertebrate species. Venom caused cells from Sarcophaga peregrina (NIH SaPe4), Drosophila melanogaster (CRL 1963), Trichoplusia ni (TN-368 and BTI-TN-5B1-4), Spodoptera frugiperda (SF-21AE), and Lymantria dispar (IPL-Ldfbc1) to round up, swell, and eventually die. Despite similar sensitivities and overlapping LC50 values [0.0004–0.0015 venom reservoir equivalents (VRE)/µl], profound differences were noted at the onset of cytotoxicity among the six insect cell lines: over 80% of the NIH SaPe4 and SF21AE cells were nonviable within 1 h after addition of an LC99 dose of venom, whereas the other cells required a 5–10-fold longer incubation period to produce mortality approaching 100%. In contrast, cells from the grass frog, Rana pipiens (ICR-2A), and goldfish, Carassius auratus (CAR), showed little sensitivity to the venom: six venom reservoir equivalents were needed to induce 50% mortality in ICR-2A cells [50% lethal concentration (LC50)=0.067 VRE/µl), and 9 VRE did not yield sufficient mortality in CAR cells for us to calculate an LC50. All susceptible cells showed similar responses when incubated with wasp venom: retraction of cytoplasmic extensions (when present), blebbing of the plasma membrane, swelling of the plasma and nuclear membranes, condensation of nuclear material, and eventual cell death attributed to lysis. The rate of swelling and lysis in NIH SaPe4 and BTI-TN-5B1-4 cells exposed to venom appeared to be dependent on the diffusion potential of extracellular solutes (Na+=choline>sucrose≥raffinose>K+), which is consistent with a colloid-osmotic lysis mechanism of cell death. When T. ni cells were cotreated with venom and the K+ channel blocker 4-aminopyridine, cell swelling and lysis increased with increasing drug concentration. In contrast, cells from S. peregrina were protected from the effects of the venom when treated in a similar manner. Addition of certain divalent cations (Zn+2 and Ca+2) to the extracellular media 1 h postvenom incubation rescued both BTI-TN-5B1-4 and NIH SaPe4 cells, suggesting that protection was gained from closure of open pores rather than prevention of pore formation. Venom from N. vitripennis displayed no hemolytic activity toward sheep erythrocytes, supporting the view that venom intoxication is not by a nondiscriminate mechanism. A possible mode of action of the venom is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, S.; Ishida, T.; Yamamoto, T., et al. Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells. Biochem. Biophys. Res. Commun. 190:148–153; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bashford, C. L.; Alder, G. M.; Menestrina, G., et al. Membrane damage by haemolytic viruses, toxins, complement and other cytolytic agents: a common mechanism blocked by divalent cations. J. Biol. Chem. 261:9300–9308; 1986.

    PubMed  CAS  Google Scholar 

  • Clem, L. W.; Sigel, M. M.; Friis, R. R. An orphan virus isolated in marine fish cell tissue culture. Ann. N.Y. Acad. Sci. 126:343–361; 1964.

    Article  Google Scholar 

  • Cohen, G. M.; Sun, X.-M.; Snowden, R. T., et al. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem. J. 286:331–334; 1992.

    PubMed  CAS  Google Scholar 

  • Compton, M. M.; Haskill, J. S.; Cidloski, J. A. Analysis of glucocorticoid actions on rat thymocyte DNA by fluorescence-activated flow cytometry. Endocrinology 122:2158–2164; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Coudron, T. A.; Puttler, B. Response of natural and factitious hosts to the ectoparasite Euplectrus plathypenae (Hymenoptera: Eulophidae) Ann. Entomol. Soc. Am. 81:931–937; 1988.

    Google Scholar 

  • Crawford, D. N.; Harvey, W. R. Barium and calcium block Bacillus thuringiensis subspecies kurstaki delta-endotoxin inhibition of potassium current across isolated midgut of larval Manduca sexta. J. Exp. Biol. 137:277; 1988.

    PubMed  CAS  Google Scholar 

  • Davies, T. R.; Wickham, T. J.; McKenna, K. A. Comparative recombinant protein production of eight insect cell lines. In Vitro Cell. Dev. Biol. 29:388; 1993.

    Google Scholar 

  • Drenth, D. Susceptibility of different species of insects to an extra extract of the venom gland of the wasp Microbracon hebetor (Say). Toxicon 12:189–192; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Finney, D. J. Probit analysis, 3rd ed. New York: Cambridge University Press; 1971.

    Google Scholar 

  • Freed, J. J.; Mezger-Freed, L. Stable haploid cultured cell lines from frog embryos. Proc. Natl. Acad. Sci. USA 65:337–344; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Himeno, M.; Ihara, H. Mode of action of delta-endotoxin from Bacillus thuringiensis var. aizawai. In: Clark, J. M., ed. Molecular action of insecticides on ion channels. Washington, D.C.: American Chemical Society; 1995:330–343.

    Google Scholar 

  • Himeno, M.; Koyama, N.; Funato, T., et al. Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins on insect cells in vitro. Agric. Biol. Chem. 49:1461–1468; 1985.

    CAS  Google Scholar 

  • Hink, W. F. Established insect cell line from the cabbage looper, Trichoplusia ni. Nature (Lond.) 226:466–467; 1970.

    Article  CAS  Google Scholar 

  • Knowles, B. H.; Dow, J. A. T. The crystal delta-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut. Bioessays 15:469–476; 1993.

    Article  CAS  Google Scholar 

  • Knowles, B. H.; Ellar, D. J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta-endotoxins with different insect specificity. Biochim. Biophys. Acta 924:509–518; 1987.

    CAS  Google Scholar 

  • Lynn, D. E.; Dougherty, E. M.; McClintock, J. T., et al. Development of cell lines from various tissues of Lepidoptera. In: Kuroda, Y.; Kurstak, E.; Maramorosch, K., ed. Invertebrate and fish tissue culture. Berlin: Springer-Verlag; 1988:239–242.

    Google Scholar 

  • McCarthy, W. J. Cytolytic differences among lepidopteran cell lines exposed to toxins of Bacillus thuringiensis subsp. kurstaki (HD-263) and aizawai (HD-112): effect of aminosugars and N-glycosylation. In Vitro Cell. Dev. Biol. 30A:690–695; 1994.

    CAS  Google Scholar 

  • Menestrina, G.; Bashford, C. L.; Pasternak, C. A. Pore-forming toxins: experiments with S. aureus toxin, C. perfringens Ø-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon 28:477–491; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Micklem, K. J.; Alder, G. M.; Buckley, C. D., et al. Protection against complement-mediated cell damage by Ca2+ and Zn2+. Complement 5:141–152; 1988.

    PubMed  CAS  Google Scholar 

  • Nicotera, P.; Hartzell, P.; Davis, G., et al. The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Ca2+ is mediated by activation of a non-lysosomal proteolytic system. FEBS Lett. 209:139; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Phelps, P. C.; Smith, M. W.; Trump, B. F. Cytosolic ionized calcium and bleb formation following acute cell injury of cultured rabbit renal tubular cells. Lab. Invest. 60:630–642; 1989.

    PubMed  CAS  Google Scholar 

  • Piek, T.; Spanjier, W. Chemistry and pharmacology of solitary wasp venoms. In: Piek, T., ed. Venoms of the Hymenoptera. London: Academic Press; 1986:161–307.

    Google Scholar 

  • Pringle, J. W. S. Proprioception in insects. J. Exp. Biol. 15:101–108; 1938.

    Google Scholar 

  • Quistad, G. B.; Dennis, P. A.; Skinner, W. S. Insecticidal activity of spider (Araneae), centipede (Chilopoda), scorpion (Scorpionida), and snake (Serpentes) venoms. J. Econ. Entomol. 85:33–39; 1992.

    CAS  Google Scholar 

  • Quistad, G. B.; Nguyen, Q.; Bernasconi, P., et al. Purification and characterization of insecticidal toxins from venom glands of the parasitic wasp, Bracon hebetor. Insect Biochem. Mol. Biol. 24:955–961; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rivers, D. B.; Denlinger, D. L. Redirection of metabolism in the flesh fly, Sarcophaga bullata, envenomated by the ectoparasitoid Nasonia vitripennis and correlation of metabolic effects with the diapause status of the host. J. Insect Physiol. 40:207–215; 1994a.

    Article  CAS  Google Scholar 

  • Rivers, D. B.; Denlinger, D. L. Developmental fate of the flesh fly, Sarcophaga bullata (Diptera: Sarcophagidae), envenomated by the pupal ectoparasitoid, Nasonia vitripennis (Hymenoptera: Pteromalidae). J. Insect Physiol. 40:121–127; 1994b.

    Article  Google Scholar 

  • Rivers, D. B.; Denlinger, D. L. Venom-induced alterations in fly lipid metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J. Invertebr. Pathol. 66:104–110; 1995.

    Article  CAS  Google Scholar 

  • Rivers, D. B.; Hink, W. F.; Denlinger, D. L. Toxicity of the venom from Nasonia vitripennis (Hymenoptera: Pteromalidae) toward fly hosts, nontarget insects, different developmental stages, and cultured insect cells. Toxicon 31:755–765; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Rivers, D. B.; Yoder, J. A. Site-specific effects of parasitism on water balance and lipid content of the parasitic wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Eur. J. Entomol. 93:75–82; 1996.

    Google Scholar 

  • Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morph. 27:353–365; 1972.

    PubMed  CAS  Google Scholar 

  • Schwartz, J.-L.; Garneau, L.; Masson, L., et al. Early response of cultured lepidopteran cells to exposure to delta-endotoxins from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim. Biophys. Acta 1065:250–260; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Suhr, S.-M.; Kim, D.-S. Identification of the snake venom substance that induces apoptosis. Biochem. Biophys. Res. Commun. 224:134–139; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M.; Mitsuhashi, J.; Ohtaki, T. Establishment of a cell line from embryonic tissues of the fleshfly, Sarcophaga peregrina (Insecta: Diptera). Dev. Growth Differ. 22:11–19; 1980.

    Article  Google Scholar 

  • Thomas, W. E.; Ellar, D. J. Bacillus thuringiensis var. israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60:181–197; 1983.

    PubMed  CAS  Google Scholar 

  • Troyer, D. A.; Kreisberg, J. I.; Venkatachalam, M. A. Lipid alterations in LLC-PK1 cells exposed to mercuric chloride. Kidney Int. 29:530–538; 1986.

    PubMed  CAS  Google Scholar 

  • Trump, B. F.; Berezesky, I. K. Calcium-mediated cell injury and cell death. FASEB J. 9:219–228; 1995.

    PubMed  CAS  Google Scholar 

  • Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J., et al. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell. Dev. Biol. 13:213–217; 1977.

    Article  CAS  Google Scholar 

  • Visser, B. J.; Labruyere, W. T.; Spanjier, W., et al. Characterization of two paralysing protein toxins (A-MTX and B-MTX), isolated from a homogenate of the wasp Microbracon hebetor (Say). Comp. Biochem. Physiol. 75B:523–530; 1983.

    CAS  Google Scholar 

  • Withers, P. C. Comparative animal physiology. Fort Worth: Saunders College Publishing; 1992.

    Google Scholar 

  • Wolfersberger, M. G. Permeability of Bacillus thuringiensis Cryl toxin channels. In: Clark, J. M., ed. Molecular action of insecticides on ion channels. Washington, D.C.: American Chemical Society; 1995:294–301.

    Google Scholar 

  • Wyllie, A. H.; Morris, R. G. Hormone-induced cell death: purification and properties of thymocytes undergoing apoptosis after glucocorticoid treatment. Am. J. Pathol. 109:78–87; 1982.

    PubMed  CAS  Google Scholar 

  • Yeh, J. Z.; Oxford, G. S.; Wu, C. H., et al. Dynamics of aminopyridine block of potassium channels in squid axon membrane. J. Gen. Physiol. 68:519–535; 1976a.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, J. Z.; Oxford, G. S.; Wu, C. H., et al. Interactions of aminopyridines with potassium channels of squid axon membranes. Biophys. J. 16:77–92; 1976b.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, M.-J.; Petty, H. R. Superoxide-mediated lysis of erythrocytes: the role of colloid-osmotic forces. J. Cell. Physiol. 157:555–561; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivers, D.B., Genco, M. & Sanchez, R.A. In vitro analysis of venom from the wasp Nasonia vitripennis: Susceptibility of different cell lines and venom-induced changes in plasma membrane permeability. In Vitro Cell.Dev.Biol.-Animal 35, 102–110 (1999). https://doi.org/10.1007/s11626-999-0009-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0009-5

Key words

Navigation