Skip to main content
Log in

Novel Neurotoxic Activity in Calliophis intestinalis Venom

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In this work, we investigated the in vitro neurotoxicity of Calliophis intestinalis venom using chick biventer cervicis neuromuscular preparations and electrophysiological analysis of voltage-gated sodium (NaV) channels expressed in HEK293 cells. We found that the indirect twitches of the neuromuscular preparations decreased over time when exposed to venom. However, the responses of these preparations to the agonists acetylcholine, carbachol, and potassium chloride were not changed after incubation with the venom. Our electrophysiological experiments show that C. intestinalis venom acts as a NaV channel antagonist—the first known from a vertebrate venom—by decreasing the peak current of NaV1.4 channels without changing the kinetics of activation or inactivation. Our proteomic results accord with earlier analyses and find that the venom contains three-finger toxins, cysteine-rich secretory proteins, kunitz peptides, phospholipase A2s, snake venom metalloproteases, and vespryns. Some of the three-finger toxins are similar to the δ-elapitoxins from the venom of the closely related Calliophis bivirgatus. However, δ-elapitoxins act as NaV channel agonists in C. bivirgatus whereas C. intestinalis venom contains NaV channel antagonists. The toxins and mechanisms responsible for the neuromuscular symptoms remain unclear as does the identity of the NaV channel antagonists. These aspects of this unusual venom require further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data are included as supplementary materials along with this publication.

References

  • Bernhard-Meyer A (1869) The poison-glands of Callophis intestinalis and C. bivirgatus. Ann Mag Nat History 4(19-24):74

    Article  Google Scholar 

  • Brown RM, Smart U, Leviton AE, Smith EN (2018) A new species of long-glanded coralsnake of the genus Calliophis (squamata: Elapidae) from Dinagat Island, with notes on the biogeography and species diversity of Philippine Calliophis and Hemibungarus. Herpetologica 74(1):89–104. https://doi.org/10.1655/Herpetologica-D-17-00008

    Article  Google Scholar 

  • Calvete JJ, Lomonte B, Saviola AJ, Bonilla F, Sasa M, Williams DJ, Undheim EAB, Sunagar K, Jackson TNW (2021) Mutual enlightenment: a toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon: X 9–10:100070. https://doi.org/10.1016/j.toxcx.2021.100070

    Article  CAS  Google Scholar 

  • Consortium TU (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45 (D1):D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  • Dashevsky D, Rokyta D, Frank N, Nouwens A, Fry BG (2021) Electric blue: molecular evolution of three-finger toxins in the long-glanded coral snake species Calliophis bivirgatus. Toxins 13(2):124. https://doi.org/10.3390/toxins13020124

    Article  CAS  Google Scholar 

  • Eng WS, Fry BG, Sunagar K, Takacs Z, Jackson TNW, Guddat LW (2015) Kunitz peptides. In: Fry BG (ed) Venomous reptiles & their toxins: evolution, pathophysiology and biodiscovery. Oxford University Press, New York, pp 281–290

  • Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lailvaux SP (2016) A species-level phylogeny of extant snakes with description of a new Colubrid subfamily and genus. PLos One 11(9):e0161070. https://doi.org/10.1371/journal.pone.0161070

    Article  CAS  Google Scholar 

  • Fukuyama I, Vogel G, Matsui M, Eto K, Munir M, Hossman MY, Hamidy A, Nishikawa K (2020) Systematics of Calliophis intestinalis with the resurrection of Calliophis nigrotaeniatus (Elapidae, Serpentes). Zoolog Sci 37(6). https://doi.org/10.2108/zs200100

  • Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA (2017) Snakebite envenoming. Nat Rev Dis Primers 3(1):1–21. https://doi.org/10.1038/nrdp.2017.63

    Google Scholar 

  • Harrison JL (1957) The bite of a blue Malaysian coral snake or Ular Matahari. Malayan Nat J 11:130–2

    Google Scholar 

  • Institute of Medical Research (1956) A death from snake bite. pp 71–72

  • Jacobson F (1937) A case of snake bite (Maticora intestinalis). Bull Raffles Museum 13:77

    Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, Nd Silva, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, HJd Silva (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLOS Med 5(11):e218. https://doi.org/10.1371/journal.pmed.0050218

    Article  Google Scholar 

  • Leviton AE (1963) Contributions to a review of Philippine snakes, III. The genera Maticora and Calliophis. Philipp J Sci 92(4):523–550

    Google Scholar 

  • Liang Q, Huynh TM, Konstantakopoulos N, Isbister GK, Hodgson WC (2020) An examination of the neutralization of in vitro toxicity of Chinese cobra (Naja atra) venom by different antivenoms. Biomedicines 8(10):377. https://doi.org/10.3390/biomedicines8100377

    Article  CAS  Google Scholar 

  • Meers PD (1968) Snake bite by the malayan coral snake: Maticora intestinalis. J R Army Med Corps 114(3):152–153. https://doi.org/10.1136/jramc-114-03-10

    Article  Google Scholar 

  • Mellacheruvu D, Wright Z, Couzens AL, Lambert JP, St-Denis N, Li T, Miteva YV, Hauri S, Sardiu ME, Low TY, Halim VA, Bagshaw RD, Hubner NC, al Hakim A, Bouchard A, Faubert D, Fermin D, Dunham WH, Goudreault M, Lin ZY, Badillo BG, Pawson T, Durocher D, Coulombe B, Aebersold R, Superti-Furga G, Colinge J, Heck AJR, Choi H, Gstaiger M, Mohammed S, Cristea IM, Bennett KL, Washburn MP, Raught B, Ewing RM, Gingras AC, Nesvizhskii AI (2013) The CRAPome: a contaminant repository for affinity purification mass spectrometry data. Nat Methods 10(8):730–736. https://doi.org/10.1038/nmeth.2557

    Article  CAS  Google Scholar 

  • Rita de Cássia OC, Hyslop S, Dorce VA, Antunes E, Rowan EG (2019) Scorpion venom increases acetylcholine release by prolonging the duration of somatic nerve action potentials . Neuropharmacology 153:41–52. https://doi.org/10.1016/j.neuropharm.2019.04.013

    Article  CAS  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  • Slowinski JB, Boundy J, Lawson R (2001) The phylogenetic relationships of asian coral snakes (elapidae: Calliophis and Maticora) based on morphological and molecular characters. Herpetologica 57(2):233–245

    Google Scholar 

  • Sunagar K, Jackson TNW, Reeks T, Fry BG (2015a) Group I phospholipase A2 enzymes. In: Fry BG (ed) Venomous reptiles & their toxins: evolution, pathophysiology and biodiscovery. Oxford University Press, New York

  • Sunagar K, Jackson TNW, Reeks T, Fry BG, Fry BG (2015b) Cysteine-rich secretory proteins. In: Fry BG (ed) Venomous reptiles & their toxins: evolution, pathophysiology and biodiscovery. Oxford University Press, New York, pp 239–246

  • Takasaki C, Yoshida H, Shimazu T, Teruuchi T, Toriba M, Tamiya N (1991) Studies on the venom components of the long-glanded coral snake, Maticora bivirgata. Toxicon 29(2):191–200. https://doi.org/10.1016/0041-0101(91)90103-X

    Article  CAS  Google Scholar 

  • Tan CH, Fung SY, Yap MKK, Leong PK, Liew JL, Tan NH (2016) Unveiling the elusive and exotic: venomics of the Malayan blue coral snake (Calliophis bivirgata flaviceps). J Proteomics 132 :1–12

    Article  CAS  Google Scholar 

  • Tan KY, Liew JL, Tan NH, Quah ES, Ismail AK, Tan CH (2019) Unlocking the secrets of banded coral snake (Calliophis intestinalis, Malaysia): a venom with proteome novelty, low toxicity and distinct antigenicity. J Proteomics 192:246–257. https://doi.org/10.1016/j.jprot.2018.09.006

    Article  CAS  Google Scholar 

  • Tan MT, Ab Razak MN, Ismail AK (2020) Does the legend speaks the truth? Revisiting the venom profile and the effect of Calliophis intestinalis bite to human

  • Tay B, Stewart TA, Davis FM, Deuis JR, Vetter I (2019) Development of a high-throughput fluorescent no-wash sodium influx assay. PLos One 14(3):e0213751. https://doi.org/10.1371/journal.pone.0213751

    Article  CAS  Google Scholar 

  • Uetz P, Freed P, Hošek J (2020) The reptile database. https://www.reptile-database.org

  • Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF (2020) Deadly proteomes: a practical guide to proteotranscriptomics of animal venoms. Proteomics 20(17-18):1900324. https://doi.org/10.1002/pmic.201900324

    Article  CAS  Google Scholar 

  • Warrell DA (2010) Snake bite. The Lancet 375(9708):77–88. https://doi.org/10.1016/S0140-6736(09)61754-2

    Article  Google Scholar 

  • Yang DC, Deuis JR, Dashevsky D, Dobson J, Jackson TNW, Brust A, Xie B, Koludarov I, Debono J, Hendrikx I, Hodgson WC, Josh P, Nouwens A, Baillie GJ, Bruxner TJC, Alewood PF, Lim KKP, Frank N, Vetter I, Fry BG (2016) The snake with the scorpion’s sting: novel three-finger toxin sodium channel activators from the venom of the long-glanded blue coral snake (Calliophis bivirgatus). Toxins 8(10):303. https://doi.org/10.3390/toxins8100303

    Article  CAS  Google Scholar 

  • Zheng Y, Wiens JJ (2016) Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol 94:537–547. https://doi.org/10.1016/j.ympev.2015.10.009

    Article  Google Scholar 

Download references

Funding

DD was funded by a UQ Centennial Scholarship from The University of Queensland, a Research Training Program scholarship from the Australian Government Department of Education and Training, and a CSIRO Early Research Career Postdoctoral Fellowship from the Commonwealth Science & Industry Research Organisation. J.R.D and I.V. are supported by NHMRC fellowships APP1162503 and APP1139961 (J.R.D.). T.M.H. was supported by a PhD scholarship funded from an Australian National Health and Medical Research Council (NHMRC) Centres for Research Excellence Grant (ID:1110343). BGF was funded by Australian Research Council Grant DP210102406.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan G. Fry.

Ethics declarations

Ethics approval

Chick biventer cervicis experiments were carried out under Monash University Animal Ethics Committee application number 2257, approved on 18 December 2019.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashevsky, D., Deuis, J.R., Vetter, I. et al. Novel Neurotoxic Activity in Calliophis intestinalis Venom. Neurotox Res 40, 173–178 (2022). https://doi.org/10.1007/s12640-021-00413-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00413-2

Keywords

Navigation