Skip to main content
Log in

Fibronectin production by cultured human lung fibroblasts in three-dimensional collagen gel culture

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In vivo, fibroblasts are distributed in a three-dimensional (3-D) connective tissue matrix. Fibronectin is a major product of fibroblasts in routine cell culture and is thought to regulate many aspects of fibroblast biology. In this context, we sought to determine if the interaction of fibroblasts with a 3-D matrix might affect fibronectin production. To examine this hypothesis, fibronectin production by fibroblasts cultured in a 3-D collagen gel or on plastic dishes was measured by ELISA. Fibroblasts in 3-D gel culture produced more fibronectin than those in monolayer culture. Fibroblasts in 3-D culture produced increasing amounts of fibronectin when the collagen concentration of the gel was increased. The 3-D nature of the matrix appeared to be crucial because plating the fibroblasts on the surface of a plastic dish underneath a collagen gel was not different from plating them on a plastic dish in the absence of collagen. In addition to increased fibronectin production, the distribution of the fibronectin produced in 3-D culture was different from that of monolayer culture. In monolayer culture, more than half of the fibronectin was released into the culture medium. In 3-D culture, however, approximately two-thirds remained in the collagen gel. In summary, the presence of a 3-D collagen matrix increases fibroblast fibronectin production and results in greater retention of fibronectin in the vicinity of the producing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J. C.; Watt, F. M. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha5betal integrin loss from the cell surface. Cell 63:425–435; 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Albelda, S. M.; Buck, C. A. Integrins and other cell adhesion molecules. FASEB J. 4:2868–2880; 1990.

    PubMed  CAS  Google Scholar 

  3. Asaga, H.; Kikuchi, S.; Yoshizato, K. Collagen gel contraction by fibroblasts requires cellular fibronectin but not plasma fibronectin. Exp. Cell Res. 193:167–174; 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Baum, B. J.; McDonald, J. A.; Crystal, R. G. Metabolic fate of the major cell surface protein of normal human fibroblasts. Biochem. Biophys. Res. Commun. 79:8–15; 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Beckmann, J. D.; Takizawa, H.; Romberger, D., et al. Serum-free culture of fractionated bovine bronchial epithelial cells. In Vitro Cell. Dev. Biol. 28A:39–46; 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76:1274–1278; 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76:1274–1278; 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Czop, J. K.; Dasish, J.; Austen, K. F. Augmentation of human monocyte opsonin-independent phagocytosis by fragments of human plasma fibronectin. Proc. Natl. Acad. Sci. USA 78:3649–3653; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Engvall, E.; Ruoslahti, E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 20:1–5; 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Gillery, P.; Maquart, F. X.; Borel, J. P. Fibronectin dependence of the contraction of collagen lattices by human skin fibroblasts. Exp. Cell Res. 167:29–37; 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Grinnell, F. Fibroblasts, myofibroblasts and wound contraction (minireview on the cellular mechanisms of disease). J. Cell Biol. 124:401–404; 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Hynes, R. O. Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25; 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Hynes, R. O.; Yamada, K. M. Fibronectin: multifunctional modular glycoproteins. J. Cell Biol. 95:369–377; 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Ingber, D. E.; Dike, L.; Hansen, L., et al. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration and tissue pattern during morphogenesis. Int. Rev. Cytol. 150:173–224; 1994.

    PubMed  CAS  Google Scholar 

  16. Labarca, C.; Paigen, K. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102:344–352; 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Mauch, C.; Hatamochi, A.; Scharffetter, K., et al. Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel. Exp. Cell Res. 178:493–503; 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Mio, T.; Adachi, Y.; Romberger, D. J., et al. Regulation of fibroblast proliferation in three dimensional collagen gel matrix. In Vitro Cell. Dev. Biol. 32:427–433; 1996.

    CAS  Google Scholar 

  19. Mochitate, K.; Pawelek, P.; Grinnell, F. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp. Cell Res. 193:198–207; 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Nakagawa, S.; Pawelek, P., Grinnell, F. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness. Exp. Cell Res. 182:572–582; 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Nishiyama, T.; Tsunenaga, M.; Nakayama, Y., et al. Growth rate of human fibroblasts is repressed by the culture within reconstituted collagen matrix but not by the culture on the matrix. Matrix 9:193–199; 1989.

    PubMed  CAS  Google Scholar 

  22. Nusgens, B.; Merrill, C.; Lapiere, C., et al. Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Collagen Relat. Res. 4:351–364; 1984.

    CAS  Google Scholar 

  23. Paye, M.; Nusgens, B. V.; Lapiére, C. M. Modulation of cellular biosynthetic activity in the retracting collagen lattice. Eur. J. Cell Biol. 45:44–50; 1987.

    PubMed  CAS  Google Scholar 

  24. Rennard, S. I.; Berg, R.; Martin, G. R., et al. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal. Biochem. 104:205–214; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Rennard, S. I.; Church, R. L.; Rohrbach, D. H., et al. Localization of the human fibronectin (FN) gene on chromosome 8 by a specific enzyme immunoassay. Biochem. Genet. 19:551–566; 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Rennard, S. I.; Crystal, R. G. Fibronectin in human bronchopulmonary lavage fluid: elevation in patients with interstitial lung disease. J. Clin. Invest. 69:113–122; 1981.

    Article  Google Scholar 

  27. Romberger, D. J.; Beckmann, J. D.; Classen, L., et al. Modulation of fibronectin production of bovine bronchial epithelial cells by transforming growth factor-β. Am. J. Respir. Cell Mol. Biol. 7:149–155; 1992.

    PubMed  CAS  Google Scholar 

  28. Sarber, R.; Hull, B.; Merrill, C., et al. Regulation of proliferation of fibroblasts of low and high population doubling levels grown in collagen lattices. Mech. Ageing Dev. 17:107–117; 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Shiro, J. A.; Chan, B. M. C.; Roswit, W. T., et al. Integrin α2β1 (VLA-2 mediates reorganization and contraction of collagen matrices by human cells). Cell 67:403–410; 1991.

    Article  Google Scholar 

  30. Shoji, S.; Rickard, K. A.; Ertl, R. F., et al. Bronchial epithelial cells produce lung fibroblast chemotactic factor: fibronectin. Am. J. Respir. Cell Mol. Biol. 1:13–20; 1989.

    PubMed  CAS  Google Scholar 

  31. Strom, S. C.; Michalopoulus, G. Collagen gel as a substrate for cell growth and differentiation. Meth. Enzymol. 82:544–555; 1982.

    PubMed  CAS  Google Scholar 

  32. Van Bockxmeer, F. M.; Martin, C. E.; Constable, I. J. Effect of cyclic AMP on cellular contractility and DNA synthesis in chorioretinal fibroblasts maintained in collagen matrices. Exp. Cell Res. 155:413–421; 1984.

    Article  PubMed  Google Scholar 

  33. Varga, J.; Rosenbloom, J.; Jimenez, S. A. Transforming growth factor β (TGFβ) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem. J. 247:597–604; 1987.

    PubMed  CAS  Google Scholar 

  34. Wang, N.; Butler, J. P.; Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, Y., Mio, T., Takigawa, K. et al. Fibronectin production by cultured human lung fibroblasts in three-dimensional collagen gel culture. In Vitro Cell.Dev.Biol.-Animal 34, 203–210 (1998). https://doi.org/10.1007/s11626-998-0125-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0125-7

Key words

Navigation