Skip to main content

Advertisement

Log in

Isolation of EpH4 mammary epithelial cell subpopulations which differ in their morphogenetic properties

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

EpH4 is a nontumorigenic cell line derived from spontaneously immortalized mouse mammary gland epithelial cells (Fialka et al., 1996). When grown in collagen gels, EpH4 cells give rise to different types of structures, e.g., solid cords or branching tubes. By removing and subsequently dissociating single three-dimensional colonies of defined morphology, we have isolated six clonal subpopulations of EpH4 cells which display distinct morphogenetic properties in collagen gel cultures. Thus, cells from the H1B clone form branching cords devoid of a central lumen, K3A3 cells from cords enclosing small multifocal lumina, and J3B1 cells form large cavitary structures containing a wide lumen. I3G2 cells form either cords or tubes, depending on the type of serum added to the culture medium. Finally, when grown in serum-free medium, Be1a cells form spherical cysts, whereas Be4a cells form long, extensively branched tubes. In additional assays of morphogenesis, i.e., cell sandwiching between two collagen gels or culture on a thick layer of Matrigel (a laminin-rich extracellular matrix), all clones form epithelial-cell-lined cavitary structures, except H1B cells which are unable to generate lumina under these conditions. The EpH4 sublines we have isolated provide an in vitro system for studying the mechanisms responsible for lumen formation and branching morphogenesis, as well as for identifying the factors which subvert these developmental processes during mammary carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barcellos-Hoff, M. H.; Aggeler, J.; Ram, T. G., et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235; 1989.

    PubMed  CAS  Google Scholar 

  • Berdichevsky, F.; Alford, D.; D’Souza, B., et al. Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107:3557–3568; 1994.

    PubMed  CAS  Google Scholar 

  • Chambard, M.; Gabrion, J.; Mauchamp, J. Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J. Cell Biol. 91:157–166; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W.; Silberstein, G. B. Postnatal development of the rodent mammary gland. In: Neville, M. C.; Daniel, C. W., ed. The mammary gland. Development, regulation and function. New York: Plenum Press; 1987:3–36.

    Google Scholar 

  • Danielson, K. G.; Oborn, C. J.; Durban, E. M., et al. Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc. Natl. Acad. Sci. USA 81:3756–3760; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Darcy, K. M.; Black, J. D.; Hahm, H. A., et al. Mammary organoids from immature virgin rats undergo ductal and alveolar morphogenesis when grown within a reconstituted basement membrane. Exp. Cell Res. 196:49–65; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Fialka, I.; Schwartz, H.; Reichmann, E., et al. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol. 132:1115–1132; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner, B. M. Epithelial morphogenesis. Cell 69:385–387; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hall, H. G.; Farson, D. A.; Bissell, M. J. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc. Natl. Acad. Sci. USA 79:4672–4676; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Hurley, W. L.; Blatchford, D. R.; Hendry, K. A. K., et al. Extracellular matrix and mouse mammary cell function: comparison of substrata in culture. In Vitro Cell. Dev. Biol. 30A:529–538; 1994.

    Article  CAS  Google Scholar 

  • Kanazawa, T.; Hosik, H. L. Transformed growth phenotype of mouse mammary epithelium in primary culture induced by specific fetal mesenchymes. J. Cell. Physiol. 153:381–391; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Keely, P. J.; Fong, A. M.; Zutter, M. M., et al. Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense α2 integrin mRNA in mammary cells. J. Cell Sci. 108:595–607; 1995.

    PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassel, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  • López-Barahona, M.; Fialka, I.; Gonzalez-Sancho, J. M., et al. Thyroid hormone regulates stromelysin expression, protease secretion and the morphogenetic potential of normal polarized mammary epithelial cells. EMBO J. 14:1145–1155; 1995.

    PubMed  Google Scholar 

  • Montesano, R.; Orci, L.; Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Schaller, G.; Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66:697–711; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Oft, M.; Peli, J.; Rudaz, C., et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotype plasticity and invasiveness of epithelial tumor cells. Genes Devel. 10:2462–2477; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ormerod, E. J.; Rudland, P. S. Mammary gland morphogenesis in vitro: formation of branched tubules in collagen gels by a cloned rat mammary cell line. Dev. Biol. 91:360–375; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, O. W.; Rønnov-Jensen, L.; Howlett, A. R., et al. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. USA 89:9064–9068; 1993.

    Article  Google Scholar 

  • Reichmann, E.; Ball, R.; Groner, B., et al. New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally. J. Cell Biol. 108:1127–1138; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Reichmann, E.; Schwartz, H.; Deiner, E. M., et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 71:1103–1116; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Schwimmer, R.; Ojakian, G. K. The α2β1 integrin regulates collagen-mediated MDCK epithelial membrane remodeling and tubule formation. J. Cell Sci. 108:2487–2498; 1995.

    PubMed  CAS  Google Scholar 

  • Soriano, J. V.; Orci, L.; Montesano, R. TGF-β1 induces morphogenesis of branching cords by cloned mammary epithelial cells at subpicomolar concentrations. Biochem. Biophys. Res. Commun. 220:879–885; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Soriano, J. V.; Pepper, M. S.; Nakamura, T., et al. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108:413–430; 1995.

    PubMed  CAS  Google Scholar 

  • Soule, H. D.; Maloney, T. M.; Wolman, S. R., et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50:6075–6086; 1990.

    PubMed  CAS  Google Scholar 

  • Stahl, S.; Weitzman, S.; Jones, J. C. R. The role of laminin-5 and its receptor in mammary epithelial cell branching morphogenesis. J. Cell Sci. 110:55–63; 1997.

    PubMed  CAS  Google Scholar 

  • Vernon, R. B.; Angello, J.-C.; Iruela-Arispe, M. L., et al. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547; 1992.

    PubMed  CAS  Google Scholar 

  • Wohlwend, A.; Vassalli, J.-D.; Belin, D., et al. LLC-PK1 cells: cloning of phenotypically stable subpopulations. Am. J. Physiol. 250:C682-C687; 1986.

    PubMed  CAS  Google Scholar 

  • Yang, J.; Guzman, R.; Richards, J., et al. Primary culture of human mammary epithelial cells embedded in collagen gels. J. Natl. Cancer Inst. 65:337–343; 1980.

    PubMed  CAS  Google Scholar 

  • Yang, Y.; Spitzer, E.; Meyer, D., et al. Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131:215–226; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Zuk, A.; Matlin, K. S. Apical β1 integrin in polarized MDCK cells mediates tubulocyst formation in response to type I collagen overlay. J. Cell Sci. 109:1875–1889; 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montesano, R., Soriano, J.V., Fialka, I. et al. Isolation of EpH4 mammary epithelial cell subpopulations which differ in their morphogenetic properties. In Vitro Cell.Dev.Biol.-Animal 34, 468–477 (1998). https://doi.org/10.1007/s11626-998-0080-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0080-3

Key words

Navigation