Skip to main content
Log in

Extracellular matrix and mouse mammary cell function: Comparison of substrata in culture

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Cultured mammary cells depend on interaction with a substratum for functional differentiation, even in the presence of lactogenic hormones. Protein synthesis and secretion by mouse mammary epithelial cells on floating collagen gels and (EHS) matrix were compared. Cells were prepared by collagenase digestion of tissue from mid-pregnant mice. Protein synthesis was consistently greater in cells attached to EHS matrix, and was associated with proportionately higher rates of protein secretion into culture medium. Cells on EHS secreted protein into a luminal space formed within multicellular alveoluslike structures. Luminal secreted protein, extracted by EGTA treatment of cells in situ, constituted up to 40% of total secreted radiolabeled protein for cells on EHS matrix. The EGTA extract contained a higher proportion of casein and lactoferrin, whereas transferrin was predominately in the medium. This indicated that cells on EHS matrix had become polarized and were secreting proteins vectorially. In contrast, EGTA treatment of cells on floating collagen gels released virtually no radiolabeled protein, showing that mammosphere formation was a property of cells on EHS. These biochemical observations were supported by ultrastructural evidence. In EHS cultures, the proportion of secreted protein in the luminal fraction, but not the distribution of secreted proteins, changed with time. This suggests that there may be leakage out of the lumen, or intraluminal degradation of protein after secretion. Nevertheless, the results suggest that cellular organization into mammospheres on EHS matrix promotes synthetic and secretory activity. This system provides a useful model for investigation of the regulation of milk secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggeler, J.; Park, C. S.; Bissell, M. J. Regulation of milk protein and basement membrane gene expression: the influence of the extracellular matrix. J. Dairy Sci. 71:2830–2842; 1988.

    PubMed  CAS  Google Scholar 

  • Aggeler, J.; Ward, J.; MacKenzie Blackie, L., et al. Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to developmentin vivo. J. Cell Sci. 99:407–417; 1991.

    PubMed  Google Scholar 

  • Barcellos-Hoff, M. H.; Aggeler, J.; Ram, T. G., et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235; 1989.

    PubMed  CAS  Google Scholar 

  • Baumrucker, C. R.; Deemer, K. P.; Walsh, R., et al. Primary culture of bovine mammary acini on a collagen matrix. Tissue Cell 20:541–554; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M. J.; Hall, H. G. Form and function in the mammary gland. The role of extracellular matrix. In: Neville, M. C.; Daniel, C. W., eds. The mammary gland. Development, regulation, and function. New York: Plenum Press; 1987:97–146.

    Google Scholar 

  • Blum, J. L.; Zeigler, M. E.; Wicha, M. S. Regulation of rat mammary gene expression by extracellular matrix components. Exp. Cell Res. 173:322–340; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L. H.; Bissell, M. J. Transferrin mRNA level in the mouse mammary gland is regulated by pregnancy and extracellular matrix. J. Biol. Chem. 262:17247–17250; 1987.

    PubMed  CAS  Google Scholar 

  • Chen, L. H.; Bissell, M. J. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regulation 1:45–54; 1989.

    PubMed  CAS  Google Scholar 

  • Durban, E. M.; Medina, D.; Butel, J. S. Comparative analysis of casein synthesis during mammary cell differentiation in collagen and mammary gland developmentin vivo. Dev. Biol. 109:288–298; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, J. T.; Burwen, S. J.; Pitelka, D. R. Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture. Tissue Cell 11:109–119; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, J. T., Enami, J.; Pitelka, D. R., et al. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cell on floating collagen membranes. Proc. Natl. Acad. Sci. USA 74:4466–4470; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, J. T.; Pitelka, D. R. Maintenance and identification of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Foster, C. S.; Smith, C. A.; Dinsdale, E. A., et al. Human mammary gland morphogenesisin vitro: The growth and differentiation of normal breast epithelium in collagen gel cultures defined by electron microscopy, monoclonal antibodies, and autoradiography. Dev. Biol. 96:197–216; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Gabelman, B. K.; Emerman, J. T. Effects of estrogen, epidermal growth factor, and transforming growth factor-α on the growth of human breast epithelial cells in primary culture. Exp. Cell Res. 201:113–118; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hadley, M. A.; Byers, S. W.; Suarez-Quian, C. A., et al. Extracellular matrix regulates sertoli cell differentiation, testicular cord formation, and germ cell developmentin vitro. J. Cell Biol. 101:1511–1522; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Haeuptle, M. T.; Suard, Y. L. M.; Bogenmann, E., et al. Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture. J. Cell Biol. 96:1425–1434; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Hall, H. G.; Farson, D. A.; Bissell, M. J. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc. Natl. Acad. Sci. USA 79:4672–4676; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, H. O.; Knudsen, J. Lactating goat mammary gland cells in culture. Comp. Biochem. Physiol. 99A:129–135; 1991.

    Article  Google Scholar 

  • Howlett, A. R.; Bissell, M. J. Regulation of mammary epithelial cell function: a role for stromal and basement membrane matrices. Protoplasma 159:85–95; 1990.

    Article  Google Scholar 

  • Hurley, D.; Hwang, S. I.; Rocha, V. Casein accumulation in distended rough endoplasmic reticulum of collagen gel-cultivated mouse mammary epithelia. J. Cell. Physiol. 141:135–141; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry 22:4969–4974; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Labarca, C.; Paigen, K. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102:344–352; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. Y.-H.; Lee, W. H.; Kaetzel, C. S., et al. Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 82:1419–1423; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. Y.-H.; Parry, G.; Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98:146–155; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Levay-Young, B. K.; Hamamoto, S.; Imagawa, W., et al. Casein accumulation in mouse mammary epithelial cells after growth stimulated by different hormonal and nonhormonal agents. Endocrinology 126:1173–1182; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Li, M. L.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, D. D. S.; Brooker, B. E.; Forsyth, I. Ultrastructural features of bovine mammary epithelial cells grown on collagen gels. Tissue Cell 17:39–51; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, D. D. S.; Forsyth, I. A.; Brooker, B. E., et al. Culture of bovine mammary epithelial cells on collagen gels. Tissue Cell 14:231–241; 1982.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, M. F. A novel system for mammary epithelial cell culture. J. Dairy Sci. 70:1967–1980; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Neville, M. C.; Stahl, L.; Brozo, L. A., et al. Morphogenesis and secretory activity of mouse mammary cultures on EHS biomatrix. Protoplasma 163:1–8; 1991.

    Article  Google Scholar 

  • Parry, G.; Cullen, B.; Kaetzel, C. S., et al. Regulation of differentiation and polarized secretion in mammary epithelial cells maintained in culture: extracellular matrix and membrane polarity influences. J. Cell Biol. 105:2043–2051; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Rennison, M. E.; Handel, S. E.; Wilde, C. J., et al. Investigation of the role of microtubules in protein secretion from lactating mouse mammary epithelial cells. J. Cell Sci. 102:239–247; 1992.

    PubMed  CAS  Google Scholar 

  • Rocha, V.; Ringo, D. L.; Read, D. B. Casein production during differentiation of mammary epithelial cells in collagen gel culture. Exp. Cell Res. 159:201–210; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Schuetz, E. G.; Li, D.; Omiecinski, C. J., et al. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J. Cell. Physiol. 134:309–323; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Seely, K. A.; Aggeler, J. Modulation of milk protein synthesis through alteration of the cytoskeleton in mouse mammary epithelial cells cultured on a reconstituted basement membrane. J. Cell. Physiol. 146:117–130; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Shamay, A.; Gertler, A. A model forin vitro proliferation of undifferentiated bovine mammary epithelial cells. Cell Biol. Int. Rep. 10:923–929; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Suard, Y. M. L.; Haeuptle, M. T.; Farinon, E., et al. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J. Cell Biol. 96:1435–1442; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Talhouk, R. S.; Chin, J. R.; Unemori, E. N., et al. Proteinases of the mammary gland: developmental regulationin vivo and vectorial secretion in culture. Development 112:439–449; 1991.

    PubMed  CAS  Google Scholar 

  • Talhouk, R. S.; Neiswander, R. L.; Schanbacher, F. L.In vitro culture of cryopreserved bovine mammary cells on collagen gels: synthesis and secretion of casein and lactoferrin. Tissue Cell 22:583–599; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Trumpbour, V.; Rocha, V. DNA synthesis inhibition and reduced functional differentiation of midpregnant mouse mammary epithelia on collagen gels. J. Cell. Physiol. 143:303–309; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wicha, M. S.; Liotta, L. A.; Garbisa, S., et al. Basement membrane collagen requirements for attachment and growth of mammary epithelium. Exp. Cell Res. 124:181–190; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Wicha, M. S.; Lowrie, G.; Kohn, E., et al. Extracellular matrix promotes mammary epithelial growth and differentiationin vitro. Proc. Natl. Acad. Sci. USA 79:3213–3217; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Wilde, C. J.; Blatchford, D. R.; Peaker, M. Regulation of mouse mammary cell differentiation by extracellular milk proteins. Exp. Physiol. 76:379–387; 1991.

    PubMed  CAS  Google Scholar 

  • Wilde, C. J.; Hasa, H. R.; Mayer, R. J. Comparison of collagen gels and mammary extracellular matrix as substrata for study of terminal differentiation in rabbit mammary epithelial cells. Exp. Cell Res. 151:519–532; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Wilde, C. J.; Peaker, M. Autocrine control of milk secretion. J. Agric. Sci. 114:235–238; 1990.

    Article  Google Scholar 

  • Wooding, F. P. W. Comparative mammary fine structure. Symp. Zool. Soc. Lond. 41:1–41; 1977.

    CAS  Google Scholar 

  • Yang, J.; Richards, J.; Guzman, R., et al. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 77:2088–2092; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Yang, N. S.; Kube, D.; Park, C., et al. Growth of human mammary epithelial cells on collagen gel surfaces. Cancer Res. 41:4093–4100; 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurley, W.L., Blatchford, D.R., Hendry, K.A.K. et al. Extracellular matrix and mouse mammary cell function: Comparison of substrata in culture. In Vitro Cell Dev Biol - Animal 30, 529–538 (1994). https://doi.org/10.1007/BF02631326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631326

Key words

Navigation