Skip to main content

Advertisement

Log in

Viability and differential function of rainbow trout liver cells in primary culture: Coculture with two permanent fish cells

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The study investigates the influence of different culture conditions on attachment, viability and functional status of rainbow trout (Oncorhynchus mykiss) liver cells in primary culture. Cells were isolated by a two-step collagenase perfusion and incubated in serum-free, chemically defined minimal essential medium (MEM), (a) as a monolayer on uncoated PRI-MARIA® dishes, (b) as a monolayer on culture dishes coated with calf collagen type 1, and (c) in coculture with the established fish cell lines RTH-149 or RTG-2. Cell attachment was assessed from DNA and protein concentrations per dish, viability was estimated from cellular lactate dehydrogenase release, and the metabolic status was investigated by measuring activities of the phosphoenolpyruvate carboxykinase and biotransformation enzymes as well as the total cytochrome P450 contents. Seeding of hepatocytes on collagen-coated dishes did not alter cell attachment or detachment from the culture substrate, but had a small, but not significant effect on cell viability and metabolic parameters. Coculture of liver cells and RTG-2 cells reduced hepatocyte detachment from the culture substrate, and it was associated with a significant elevation of 7-ethoxyresorufin-O-deethylase activities in the hepatic cells. Cytochrome P450 contents, however, were not altered. The coculture effect on liver cell physiology clearly depended on the type of cell line, because coculture with RTH-149 cells led to similar, but much weaker effects than obtained in cocultures with RTG-2 cells. Electron microscopical observations revealed the existence of gap junctions and possible exocytosis-like transport between cell lines and hepatocytes. The results point to the potential of coculture systems to improve physiological parameters of trout liver cells in primary culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. J.; Miller, M. R.; Hinton, D. E. In vitro modulation of 17-β-estradiol-induced vitellogenin synthesis: effects of cytochrome P4501A1 inducing compounds on rainbow trout (Oncorhynchus mykiss) liver cells. Aquat. Toxicol. 34:327–350; 1996.

    Article  CAS  Google Scholar 

  • Bissell, D. M.; Arenson, D. M.; Maher, J. J., et al. Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J. Clin. Invest. 79:801–812; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, D. M.; Guzelian, P. S. Ascorbic acid deficiency and cytochrome P-450 in adult rat hepatocytes in primary monolayer culture. Arch. Biochem. Biophys. 192:569–576; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Blair, J. B.; Miller, R. M.; Pack, D., et al. Isolated trout liver cells: establishing short-term primary cultures exhibiting cell-to-cell interactions. In Vitro Cell. Dev. Biol. 26:237–249; 1990.

    PubMed  CAS  Google Scholar 

  • Blair, J. B.; Ostrander, G. K.; Miller, M. R., et al. Isolation and characterization of biliary epithelial cells from rainbow trout liver. In Vitro Cell. Dev. Biol. 31:780–789; 1995.

    CAS  Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Braunbeck, T. Isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) in primary culture: cytopathological effects of 4-chloroaniline in vitro. Aquat. Toxicol. 25:83–110; 1993.

    Article  CAS  Google Scholar 

  • Braunbeck, T.; Nagel, R.; Storch, V. Sex-specific reaction of liver ultrastructure in zebra fish (Brachydanio rerio) after prolonged sublethal exposure to 4-nitrophenol. Aquat. Toxicol. 14:185–202; 1989.

    Article  CAS  Google Scholar 

  • Braunbeck, T.; Storch, V. Senescence of hepatocytes isolated from rainbow trout (Oncorhynchus mykiss) in primary culture: an ultrastructural study. Protoplasma 170:135–150; 1992.

    Article  Google Scholar 

  • Burke, M. D.; Mayer, R. T. Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab. Dispos. 2:583–588; 1974.

    PubMed  CAS  Google Scholar 

  • Castell, J. V.; Gomez-Lechon, M. J.; Coloma, J., et al. Preservation of the functionality of adult hepatocytes in serum-free cultures. Hoppe-Seyler’s Z. Physiol. Chem. 364:333–336; 1983.

    Google Scholar 

  • Clayton, D. F.; Harrelson, A. L.; Damell, J. R. Dependence of liver-specific transcription on tissue organization. Mol. Cell. Biol. 5:2623–2632; 1985.

    PubMed  CAS  Google Scholar 

  • Corlu, A.; Ilyin, G.; Cariou, S., et al. The coculture: a system for studying the regulation of liver differentiation/proliferation activity and its control. Cell Biol. Toxicol. 13:235–242; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cravedi, J. P.; Paris, A.; Monod, G., et al. Maintenance of cytochrome P450 content and phase I and II activities in trout hepatocytes cultured as spheroidal aggregates. Comp. Biochem. Physiol. C. 113C:241–246; 1996.

    CAS  Google Scholar 

  • Donato, M. T.; Castell, J. V.; Gomez-Lechon, M. J. Prolonged expression of biotransformation activities of rat hepatocytes co-cultured with established cell lines. Toxicol. In Vitro 4:461–466; 1990.

    Article  CAS  Google Scholar 

  • Donato, M. T.; Castell, J. V.; Gomez-Lechon, M. J. Co-cultures of hepatocytes with epithelial-like cell lines: expression of drug-biotransformation activities by hepatocytes. Cell. Biol. Toxicol. 7:1–14; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Duan, C.; Hanzawa, N.; Takeuchi, Y., et al. Use of primary cultures of salmon hepatocytes for the study of hormonal regulation of insulin-like growth factor I expresion in vitro. Zool. Sci. 10:473–480; 1993.

    CAS  Google Scholar 

  • Flouriot, G.; Vaillant, C.; Salbert, G., et al. Monolayer and aggregate cultures of rainbow trout hepatocytes: long-term and stable liver-specific expression in aggregates. J. Cell Sci. 105:407–416; 1993.

    PubMed  CAS  Google Scholar 

  • Fryer, J. L.; McCain, B. B.; Leong, J. C. A cell line derived from rainbow trout (Salmo gairdneri) hepatoma. Fish Pathol. 15:193–200; 1981.

    Google Scholar 

  • Gagné, F.; Blaise, C. Evaluation of the genotoxicity of environmental contaminants in sediments to rainbow trout hepatocytes. Environ. Toxicol. Water Qual. 10:217–229; 1995.

    Article  Google Scholar 

  • Goulet, F.; Norinand, C.; Morin, O. Cellular interactions promote tissue-specific function, biomatrix deposition and functional communication of primary cultured hepatocytes. Hepatology 8:1010–1018; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Grosvik, B. E.; Goksøyr, A. Biomarker protein expression in primary cultures of salmon (Salmo salar) hepatocytes exposed to environmental pollutants. Biomarker 1:45–53; 1996.

    CAS  Google Scholar 

  • Guguen-Guillouzo, C. Role of homotypic and heterotypic cell interactions in expression of specific functions by cultured hepatocytes. In: Guillouzo, A.; Guguen-Guillouzo, C., ed. Research in isolated and cultured hepatocytes. Paris: John Libbery Eurotext Ltd./INSERM; 1986.

    Google Scholar 

  • Guguen-Guillouzo, C.; Clément, B.; Baffet, G., et al. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes cocultured with another liver epithelial cell type. Exp. Cell Res. 143:47–54; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Guguen-Guillouzo, C.; Corlu, A. Recent progresses on long-term hepatocyte primary cultures: importance of cell microenvironments. Cytotechnology. 11:S3–5; 1993.

    Article  PubMed  Google Scholar 

  • Guguen-Guillouzo, C.; Gouillouzo, A. Modulation of functional activities in cultured rat hepatocytes. Mol. Cell Biochem. 53/54:35–56; 1983.

    Article  Google Scholar 

  • Guguen-Guillouzo, C.; Seignoux, D.; Courtois, Y., et al. Amplified phenotypic changes in adult rat and baboon hepatocytes cultured on a complex biomatrix. Biol. Cell. 46:11–20; 1982.

    CAS  Google Scholar 

  • Habig, W. H.; Pabst, M. J.; Jakoby, W. B. Glutathione S-transferases. J. Biol. Chem. 249:7130–7139; 1974.

    PubMed  CAS  Google Scholar 

  • Hampton, J. A.; Lantz, R. C.; Goldblatt, P. J., et al. Functional units in rainbow trout liver. II. The biliary system. Anat. Rec. 221:619–634; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hampton, J. A.; Lantz, R. C.; Hinton, D. E. Functional units in rainbow trout liver. III. Morphometric analysis of parenchyma, stroma, and component cell types. Am. J. Anat. 185:58–73; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Hampton, J. A.; McCuskey, P. M.; McCuskey, R. M., et al. Functional units in rainbow trout liver. I. Arrangement and histochemical properties of hepatocytes. Anat. Rec. 213:166–175; 1985

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, S.; Ooshiro, Z. Primary culture of the eel hepatocytes in the serum-free medium. Bull. Jpn. Soc. Sci. Fish. Oceanogr. 52:1641–1651; 1986.

    Google Scholar 

  • Hinton, D. E.; Couch, H. A. Architectural pattern, tissue and cellular morphology in livers of fishes: relationship to experimentally induced neoplastic responses. In: Braunbeck, T.; Hinton, D. E.; Streit, B., ed. Aquatic toxicology. Basel: Birkhäuser; in press.

  • Hyllner, S. J.; Andersson, T.; Haux, C., et al. Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J. Cell. Physiol. 139:24–28; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, G. J.; Thauland, R.; Soli, N. E. Measurement of xenobiotic metabolizing enzyme activities in primary monolayer cultures of immature rainbow trout hepatocytes at two acclimatization temperatures. Alternatives to Laboratory Animals (ATLA) 24:727–740; 1996.

    Google Scholar 

  • Johnson-Wint, B.; Hollis, L. W. A rapid in situ deoxyribonucleic acid assay for determining cell number in culture and tissue. Anal. Biochem. 122:338–344; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Joplin, R.; Strain, A. J.; Neuberger, J. M. Biliary epithelial cells from liver of patients with primary biliary cirrhosis: isolation, characterization, and short-term culture. J. Pathol. 162:255–260; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, Y.; Igarashi, M.; Iwashita, M., et al. Effects of fish and calf type 1 collagens as culture substrate in the adhesion and spreading process of established fish cells. In Vitro Cell. Dev. Biol. 31:178–182; 1995.

    CAS  Google Scholar 

  • Karnovsky, M. J. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. J. Cell Biol. 51:146A; 1971.

  • Kennedy, C. J.; Gill, K. A.; Walsh, P. C. Temperature acclimation of xenobiotic metabolizing enzymes in cultured hepatocytes and whole liver of the gulf toadfish (Opsanus beta). Can. J. Fish. Aquat. Sci. 48:1212–1219; 1991.

    CAS  Google Scholar 

  • Klaunig, J. E.; Ruch, R. J.; Goldblatt, P. J. Trout hepatocyte culture: isolation and primary culture. In Vitro Cell. Dev. Biol. 21:221–228; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Koban, M. Can cultured teleost hepatocytes show temperature acclimation? Am. J. Physiol. 250:R211-R220; 1986.

    PubMed  CAS  Google Scholar 

  • Kocal, T.; Quinn, B. A.; Smith, I. R., et al. Use of trout serum to prepare primary attached monolayer cultures of hepatocytes from rainbow trout (Salmo gairdneri). In Vitro Cell. Dev. Biol. 24:304–308; 1988.

    Article  Google Scholar 

  • Li, A. P.; Barker, J.; Beck, D., et al. Culturing of primary hepatocytes as entrapped aggregates in a packed bed bioreactor: a potential bioartificial liver. In Vitro Cell. Dev. Biol. 29A:249–254; 1993.

    PubMed  CAS  Google Scholar 

  • Lindsay, C.; Chenery, R. J.; Hawksworth, G. M. Primary culture of rat hepatocytes in the presence of dimethyl sulphoxide: a system to investigate the regulation of cytochrome P450 1A. Biochem. Pharmacol. 42:17–25; 1991.

    Article  Google Scholar 

  • Lipsky, M.; Sheridan, T. R.; Benett, R., et al. Comparison of trout hepatocyte culture on different substrates. In Vitro Cell. Dev. Biol. 22:360–362; 1986.

    Article  Google Scholar 

  • Maitre, J.-L.; Valotaire, Y.; Guguen-Guillouzo, C. Estradiol-17β stimulation of vitellogenin synthesis in primary culture of male rainbow trout hepatocytes. In Vitro Cell. Dev. Biol. 22:337–343; 1986.

    Article  CAS  Google Scholar 

  • Masfaraud, J. F.; Devaux, A.; Pfohl-Leszkowicz, A., et al. DNA adduct formation and 7-ethoxyresorufin O-deethylase induction in primary culture of rainbow trout hepatocytes exposed to benzo(a)pyrene. Toxicol. In Vitro 6:523–531; 1992.

    Article  CAS  Google Scholar 

  • Miller, M. R.; Saito, N.; Blair, J. B., et al. Acetaminophen toxicity in cultured trout liver cells. II. Maintenance of cytochrome P450 IAI. Exp. Mol. Pathol. 58:127–138; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Mommsen, T. P.; Lazier, C. B. Stimulation of estrogen receptor accumulation by estradiol in primary cultures of salmon hepatocytes. FEBS Lett. 195:269–271; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Mommsen, T. P.; Suarez, R. K. Control of gluconeogenesis in rainbow trout hepatocytes: role of pyruvate branchpoint and phosphoenolpyruvate-pyruvate cycle. Mol. Physiol. 6:9–18; 1984.

    CAS  Google Scholar 

  • Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes—I. Evidence for its hemoprotein nature. J. Biol. Chem. 239:2370–2377; 1964a.

    PubMed  CAS  Google Scholar 

  • Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification and properties. J. Biol. Chem. 239:2379–2386; 1964b.

    PubMed  CAS  Google Scholar 

  • Ostrander, G. K.; Blair, J. B.; Stark, B. A., et al. Long-term primary culture of epithelial cells from rainbow trout (Oncorhynchus mykiss) liver. In Vitro Cell. Dev. Biol. 31:367–378; 1995.

    CAS  Google Scholar 

  • Pelissero, C.; Fluoriot, G.; Foucher, J. L., et al. Vitellogenin synthesis in cultured hepatocytes: an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol. 44:263–273; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Pesonen, M.; Andersson, T. B. Fish primary hepatocyte culture: an important model of xenobiotic metabolism and toxicity studies. Aquat. Toxicol. 37:253–267; 1997.

    Article  CAS  Google Scholar 

  • Pesonen, M., Goksoyr, A.; Andersson, T. Expression of P4501AI in a primary culture of rainbow trout hepatocytes exposed to β-naphthoflavone or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch. Biochem. Biophys. 292:228–233; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Rabergh, C. M. I.; Ziegler, K.; Isomaa, B., et al. Uptake of taurocholic acid and cholic acid in isolated fish hepatocytes from rainbow trout. Am. J. Physiol. 267:G380-G386; 1994.

    PubMed  CAS  Google Scholar 

  • Rabergh, C. M. I.; Kane, A. S.; Reimschuessel, R., et al. Viability and induction of tyrosine aminotransferase in rainbow trout hepatocytes cultured on laminin and polylysine in a serum-free medium. Methods Cell Sci. 17:207–215; 1995.

    Article  Google Scholar 

  • Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208–212; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, K. C.; Jarett, L.; Finke, E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Tech. 35:313–323; 1960.

    CAS  Google Scholar 

  • Rogiers, V.; Vercruysse, A. Rat hepatocyte cultures and co-cultures in biotransformation studies of xenobiotics. Toxicology 82:193–208; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Sawada, N.; Tomomura, A.; Sattler, C. A., et al. Effects of extracellular matrix components on the growth and differentiation of cultured rat hepatocytes. In Vitro Cell. Dev. Biol. 23:267–273; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Scholz, S.; Behn, I.; Honeck, H., et al. Development of a monoclonal antibody for ELISA assay of CYP1A in primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes. Biomarker 2:287–294; 1997.

    Article  CAS  Google Scholar 

  • Segner, H. Isolation and primary culture of teleost hepatocytes. Comp. Biochem. Physiol., in press.

  • Segner, H.; Braunbeck, T. Adaptive changes of liver composition and structure in golden ide during winter acclimatization. J. Exp. Zool. 255:171–185; 1990

    Article  Google Scholar 

  • Segner, H.; Böhm, R.; Kloas, W. Binding and bioactivity of insulin in primary cultures of carp (Cyprinus carpio) hepatocytes. Fish Physiol. Biochem. 11:411–420; 1993.

    Article  CAS  Google Scholar 

  • Segner, H.; Blair, J. B.; Wirtz, G., et al. Cultured trout liver cells: utilization of substrates and response to hormones. In Vitro Cell. Dev. Biol. 30A:306–311; 1994.

    CAS  Google Scholar 

  • Segner, H.; Scholz, S.; Böhm, R. Carp (Cyprinus carpio) hepatocytes in primary culture: morphology and metabolism. Actes Colloq. Int. (Editions de IFREMER) 18:77–82; 1995.

    Google Scholar 

  • Skett, P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing-solutions? Toxicol. In Vitro 8:491–504; 1994.

    Article  CAS  Google Scholar 

  • Spurr, A. R. A low viscosity embedding medium for electron microscopy. J. Ultrastruct. Res. 29:31–43; 1969.

    Article  Google Scholar 

  • Vogt, G.; Segner, H. Spontaneous formation of intercellular bile canaliculi and hybrid biliary-pancreatic canaliculi in co-culture of hepatocytes and exocrine pancreas cells from carp. Cell Tissue Res. 289:191–194; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, G.; Böhm, R.; Segner, H. Mimosine-induced cell death and related chromatin changes. J. Submicrosc. Cytol. Pathol. 26:319–330; 1994.

    PubMed  CAS  Google Scholar 

  • Weißhaar, D.; Gossrau, E.; Faderl, B. Normbereiche von alpha-HBDH, LDH, AP and LAP bei Messung mit substratoptimierten Testansätzen. Med. Welt. 26:387–390; 1975.

    PubMed  Google Scholar 

  • Wolf, K.; Quimby, M. C. Established eurythermic line of fish cells in vitro. Science (Washington, DC) 135:1065–1066; 1962.

    Article  CAS  Google Scholar 

  • Zahn, T.; Arnold, H.; Braunbeck, T. Cytological and biochemical response of R1 cells and isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) to sublethal in vitro exposure to disulfoton. Exp. Toxic. Pathol. 48:47–64; 1996.

    CAS  Google Scholar 

  • Zahn, T., Braunbeck, T. Isolated fish hepatocytes as a tool in aquatic toxicology—experiments with dinitro-o-cresol and 2,4-dichlorophenol. Sci. Total Environ., Suppl.:721–734; 1993.

  • Zahn, T.; Hauck, C.; Braunbeck, T. Cytological alterations in fish fibrocytic R1 cells as an alternative test system for the detection of sublethal effects of environmental pollutants. In: Braunbeck, T.; Hanke, W.; Segner, H., ed. Fish—ecotoxicology and ecophysiology. Weinheim: VCH; 1993:104–126.

    Google Scholar 

  • Zurlo, J.; Arterburn, L. M. Characterization of a primary hepatocyte culture system for toxicological studies. In Vitro Cell. Dev. Biol. 32A:211–220; 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, S., Braunbeck, T. & Segner, H. Viability and differential function of rainbow trout liver cells in primary culture: Coculture with two permanent fish cells. In Vitro Cell.Dev.Biol.-Animal 34, 762–771 (1998). https://doi.org/10.1007/s11626-998-0030-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0030-0

Key words

Navigation