Skip to main content
Log in

Cytokine inducible matrix metalloproteinase expression in immortalized rat chondrocytes is independent of nitric oxide stimulation

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The objective of this study was to determine if an immortalized mammalian chondrocyte cell line had a profile of matrix metalloproteinase (MMP) expression that was consistent with what has been reported for primary chondrocytes in vitro and in vivo. A combination of zymography, Western, and Northern analysis was used to examine the expression of MMPs that are relevant to cartilage degradation. Both interleukin-1β and tumor necrosis factor α induced a 4- to 9-fold increase in the level of MMP-9 expression in conditioned media, and a 17- to 24-fold increase in MMP-3 mRNA. Other compounds such as basic fibroblast growth factor and staurosporine each increased MMP-9 expression individually and potentiated the effects of the two cytokines. Transforming growth factor β had no positive or inhibitory effects. N-methyl arginine blocked the increase in nitric oxide observed following treatment with the cytokines but did not prevent the increased expression of MMPs. The pattern of metalloproteinase expression observed in IRC cells and the response to cytokines is very similar to what has been reported during the pathogenesis of osteoarthritis. The IRC cells should be useful as a model system to study basic mechanisms controlling chondrocyte MMP expression and to identify pharmacological modulators of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzam, H. S.; Arand, G.; Lippman, E. W. Association of MMP-2 activation potential and metastatic progression in human breast cancer cell lines independent of MMP-2 production. J. Natl. Cancer Inst. 85:1758–1764; 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Benya, P. D.; Padilla, S. R.; Nimni, M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15:1313; 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Blanco, F. J.; Ochs, R. L.; Schwarz, H., et al. Chondrocyte apoptosis induced by nitric oxide. Am. J. Pathol. 146:75–85; 1995.

    PubMed  CAS  Google Scholar 

  4. Chandrasekhar, S.; Harvey, A. K. Differential regulation of metalloprotease steady-state mRNA levels by Il-1 and FGF in rabbit articular chondrocytes. FEBS Letters 296:195–200; 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Chandrasekhar, S.; Harvey, A. K.; Higginbotham, J. D., et al. Interleukin-1 induced suppression of type II collagen gene transcription involves DNA regulatory elements. Exp. Cell Res. 191:105–114; 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Chatles, I. G.; Palmer, R. M.; Hickery, M. S., et al. Cloning characterization and expression of a cDNA encoding an inducible nitric oxide synthase from human chondrocytes. Proc. Natl. Acad. Sci. USA 90:11419–11423; 1993.

    Article  Google Scholar 

  7. Chomczynski, P.; Sacchi, N. Single step isolation by acid guanidium thiocyanate-phenol chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Crabbe, T.; O’Connell, J. P.; Smith, B. J., et al. Reciprocated matrix metalloproteinase activation; a process performed by interstitial collagenase and progelatinase A. Biochemistry 33:14419–14425; 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Dean, D. D. Proteinase-mediated cartilage degradation in osteoarthritis. Semin. Arthritis Rheum. 20 (Suppl.):2–11; 1991.

    Article  PubMed  CAS  Google Scholar 

  10. DiBattista, J. A.; Martel-Pelletier, J.; Fujimoto, N., et al. Prostaglandins E2 and E1 inhibit cytokine-induced metalloprotease expression in human synovial fibroblasts. Lab. Invest. 71:270–278; 1994.

    PubMed  CAS  Google Scholar 

  11. Fillmore, H. L.; Mainardi, C. L.; Hasty, K. A. Differentiation of PC12 cells with nerve growth factor is associated with induction of transin synthesis and release. J. Neurosci. Res. 31:662–669; 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Fridman, R.; Bird, R. E.; Hoythya, M., et al. Expression of human recombinant 72 kDa gelatinase and TIMP-2: characterization of complex and free enzyme. Biochem. J. 289:411–416; 1993.

    PubMed  CAS  Google Scholar 

  13. Ganu, V. S.; Hu, S. I.; Melton, R., et al. Biochemical and molecular characterization of stromelysin synthesized by human osteoarthritic chondrocytes stimulated with recombinant human interleukin-1. Clin. Exp. Rheumatol. 12:489–496; 1994.

    PubMed  CAS  Google Scholar 

  14. Goldring, M. B.; Birkhead, J. R.; Suen, L.-F., et al. Interleukin-1 beta modulated gene expression in immortalized human chondrocytes. J. Clin. Invest. 94:2307–2416; 1994.

    PubMed  CAS  Google Scholar 

  15. Green, L.; Wagner, D.; Glogowski, J., et al. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126:131–138; 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Harvey, A. K.; Stack, S. T.; Chandrasekhar, S. Differential modulation of degradative and repair responses of interleukin-1 treated chondrocytes by platelet derived growth factor. Biochem. J. 292:129–136; 1993.

    PubMed  CAS  Google Scholar 

  17. Hasty, K. A.; Reife, R. A.; Kang, A. H., et al. The role of stromelysin in the cartilage destruction that accompanies inflammatory arthritis. Arthritis Rheum. 33:388–397; 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Herron, G. S.; Banda, J. J.; Clark, E. J., et al. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenases and stromelysin activities is regulated by endogenous inhibitor. J. Biol. Chem. 261:2814–2818; 1986.

    PubMed  CAS  Google Scholar 

  19. Horton, W. E., Jr.; Cleveland, J.; Rupp, V., et al. An established rat cell line expressing chondrocyte properties. Exp. Cell Res. 178:457–468; 1988.

    Article  PubMed  Google Scholar 

  20. Hulkower, K. I.; Georgescu, H. I.; Evans, C. H. Interleukin-1 and basic fibroblast growth factor are not mediated by protein kinase C. Biochem. J. 276:157–162; 1991.

    PubMed  CAS  Google Scholar 

  21. Jones, B. E.; Moshyedi, P.; Gallo, S., et al. Characterization and novel activation of 72 kDa metalloproteinases of retinal interphotoreceptor matrix and Y-79 in culture medium. Exp. Eye Res. 59:257–269; 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Kerr, L. D.; Miller, D. B.; Matrisian, L. M. TGF-beta-1 inhibition of transin/stromelysin gene expression is mediated through a FOS binding sequence. Cell 61:267–278; 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Kohn, E. C.; Jacobs, W.; Kim, Y. S., et al. Calcium influx modulates expression of matrix metalloproteinase-2 (72 kDa type IV collagenase, gelatinase A). J. Biol. Chem. 269:21505–21511; 1994.

    PubMed  CAS  Google Scholar 

  24. Kondo, S.; Ishiguro, N.; Iwata, H., et al. The effects of nitric oxide on chondrocytes and lymphocytes. Biochem. Biophys. Res. Commun. 197:1421–1437; 1993.

    Article  Google Scholar 

  25. Koolwijk, P.; Miltenburg, A. M.; Van Erck, M. G., et al. Activated gelatinase B (MMP-9) and urokinase-type plasminogen activator in synovial fluids of patients with arthritis. Correlation with clinical and experimental variables of inflammation. J. Rheumatol. 22:385–393; 1995.

    PubMed  CAS  Google Scholar 

  26. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  27. Lees, M.; Taylor, D. J.; Woolley, D. E. Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelantinases A and B. Eur. J. Biochem. 223:171–177; 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Mallein-Gerin, F.; Olsen, B. R. Expression of simian virus 40 large T (tumor) oncogene in mouse chondrocytes induces cell proliferation without loss of the differentiated phenotype. Proc. Natl. Acad. Sci. USA 90:3289–3293; 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Manicourt, D. H.; Fujimoto, N.; Obata, K., et al. Serum levels of collagenase, stromelysin-1 and TIMP-1. Age and sex related differences in normal subjects and relationship to the extent of joint involvement. Arthritis Rheum. 37:1774–1783; 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Martel-Pelletier, J.; McCollum, R.; Fujimoto, N., et al. Excess of metalloproteases over tissue inhibitor of metalloproteases may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab. Invest. 70:807–815; 1994.

    PubMed  CAS  Google Scholar 

  31. Martel-Pelletier, J.; Pelletier, J. P.; Cloutier, J. M., et al. Neutral proteases capable of proteoglycan digesting activity in osteoarthritic and normal human articular cartilage. Arthritis Rheum. 27:305–312; 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Matrisian, L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 6:121–125; 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Matrisian, L. M. The matrix degrading metalloproteinases. Bioassays 14:455–463; 1992.

    Article  CAS  Google Scholar 

  34. Mitchell, P. G.; Cheung, H. S. Tumor necrosis factor alpha and epidermal growth factor regulation of collagenase and stromelysin in adult porcine articular chondrocytes. J. Cell. Physiol. 149:132–140; 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Montai, M.; Smith, R. L.; Schurman, D. J., et al. Expression of a 92-kD type IV collegenase/gelatinase (gelatinase B) in osteoarthritic cartilage and its induction in normal human articular cartilage by interleukin-1. J. Clin. Invest. 92:179–185; 1993.

    Google Scholar 

  36. Murrell, G. A.; Jang, D.; Williams, R. J. Nitric oxide activates metalloproteinase enzymes in articular cartilage. Biochem. Biophys. Res. Commun. 206:15–21; 1995.

    Article  PubMed  CAS  Google Scholar 

  37. Nguyen, Q.; Mort, J. S.; Roughley, P. J. Preferential mRNA expression of prostromelysin relative to precollagenase and in situ localization in human articular cartilage. J. Clin. Invest. 89:1189–1197; 1992.

    PubMed  CAS  Google Scholar 

  38. Ogata, Y.; Itoh, Y.; Nagase, H. Steps involved in activation of the promatrix metalloproteinase 9 (progelatinase B) tissue inhibitor of metalloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J. Biol. Chem. 270:18506–18511; 1995.

    Article  PubMed  CAS  Google Scholar 

  39. Overall, C. M. Repression of tissue inhibitor of matrix metalloproteinase expression by all-trans-retinoic acid in rat bone cell population: comparisons with transforming growth factor beta-1. J. Cell. Physiol. 164:17–25; 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Oxford, J. T.; Doege, K.; Horton, W. E., Jr., et al. Characterization of type II and type XI collagen synthesis by an immortalized rat chondrocyte cell line (IRC) having a low level of type II collagen in RNA synthesis. Exp. Cell Res. 213:28–36; 1994.

    Article  PubMed  CAS  Google Scholar 

  41. Pelletier, J. P.; Martel-Pelletier, J.; Howell, D. S., et al. Collagenase and collagenolytic activity in human osteoarthritic cartilage. Arthritis Rheum. 26:63–68; 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Pelletier, J. P.; Roughly, P.; DiBattista, J. A., et al. Are cytokines involved in osteoarthritic pathophysiology? Semin. Arthritis Rheum. 20 (Suppl.):12–25; 1991.

    Article  PubMed  CAS  Google Scholar 

  43. Pujol, J. P.; Galera, P.; Redini, F., et al. Role of cytokines in osteoarthritis: comparative effects of interleukin-1 and transforming growth factor beta on cultured rabbit chondrocytes. J. Rheumatol. 27 (Suppl.):76–79; 1991.

    CAS  Google Scholar 

  44. Sapolsky, A. I.; Keiser, H.; Howell, D. S., et al. Metalloproteases of human articular cartilage that digest cartilage proteoglycan at neutral and acid pH. J. Clin. Invest. 58:1030–1041; 1976.

    Article  PubMed  CAS  Google Scholar 

  45. Stefanovic-Racic, M.; Morales, T. I.; Taskiran, D., et al. The role of nitric oxide in proteoglycan turnover by bovine articular cartilage organ cultures. J. Immunol. 156:1213–1220; 1996.

    PubMed  CAS  Google Scholar 

  46. Taskiran, D.; Stefanovic-Racic, M.; Georgescu, H., et al. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem. Biophys. Res. Commun. 200:142–148; 1994.

    Article  PubMed  CAS  Google Scholar 

  47. Tokuraku, M.; Sato, H.; Murakami, S., et al. Activation of the precursor of gelatinase A/72 kDa type IV collagenase/MMP-2 in lung carcinoma correlates with the expression of membrane type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int. J. Cancer 64:355–359; 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Vincenti, M. P.; Clark, I. M.; Brinckerhoff, C. E. Using inhibitors of metalloproteinases to treat arthritis. Arthritis Rheum. 37:1115–1126; 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Werb, Z. Textbook of rheumatology. In: Kelly, W. N.; Harris, E., Jr.; Ruddy, S., et al., ed. 3rd ed. Philadelphia: W. B. Saunders Co.; 1989:300–309.

    Google Scholar 

  50. Zafarullah, M.; Su, S.; Martel-Pelletier, J., et al. Tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA is constitutively expressed in bovine, human normal, and osteoarthritic articular chondrocytes. J. Cell. Biochem. 60(2):211–217; 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, W.E., Udo, I., Precht, P. et al. Cytokine inducible matrix metalloproteinase expression in immortalized rat chondrocytes is independent of nitric oxide stimulation. In Vitro Cell.Dev.Biol.-Animal 34, 378–384 (1998). https://doi.org/10.1007/s11626-998-0019-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0019-8

Key words

Navigation