Skip to main content

Regulation of Chondrocyte Matrix Metalloproteinase Gene Expression

  • Chapter
  • First Online:
Proteases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

Abstract

Matrix metalloproteinases also known as MMPs are zinc-dependent endoproteases which process extracellular matrix proteins at neutral pH to regulate normal macromolecular protein turnover as well as those cellular events associated with the remodeling of tissue architecture. The MMP superfamily of proteins include the classical MMPs, MMP-1, -8, -13, and -18, the gelatinases, MMP-2, -9, stromelysins, MMP-3, -10, -11, matrilysins, MMP-7, MMP-26, membrane-type MMPs (MT-MMPs; MMP-14, -17, 24/25) the ADAMS (a disintegrin and metalloproteinase) also known as adamlysins and the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motif). MMP genes are regulated principally via the activation of transcription factors induced by various growth factors and cytokine/cytokine receptor interactions which are pertinent to the tissue allostasis, but which are most critical to the pathophysiological progression of rheumatoid arthritis and osteoarthritis. The most important transcription factors known to be involved in regulating MMP gene expression include the synthesis and/or activation of NF-κB, Cbfa1, AP-1, Nmp4/CIZ, ELF3, c-Maf, KLF5 and Sp1 which interact with specific known sequences in the promoter region of MMP genes. In arthritis, protein kinase pathways are generally activated by pro-inflammatory cytokines, including interleukin-1β, tumor necrosis factor-α, interleukin-6, and other members of the IL-6 protein family. The transcription factors activated by these signaling mechanisms have traditionally been considered “undruggable.” However, recent experimental evidence indicates that inhibition of transcription factor synthesis and/or activation may be achieved which could be employed to suppress MMP gene activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701

    Article  PubMed  CAS  Google Scholar 

  2. Mancini A, Di Battista JA (2006) Transcriptional regulation of matrix metalloproteinase gene expression in health and disease. Front Biosci 11:423–446

    Article  PubMed  CAS  Google Scholar 

  3. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:322–329

    Article  Google Scholar 

  4. Reuben PM, Cheung HS (2006) Regulation of matrix metalloproteinase (MMP) gene expression by protein kinases. Front Biosci 11:1199–1215

    Article  PubMed  CAS  Google Scholar 

  5. Flannery CR (2006) MMPs and ADAMTS: functional studies. Front Biosci 11:544–569

    Article  PubMed  CAS  Google Scholar 

  6. Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–145

    Article  PubMed  CAS  Google Scholar 

  7. Sylvester J, Ahmad R, Zafarullah M (2013) Role of Sp1 transcription factor in interleukin-1-induced ADAMTS-4 (aggrecanase-1) gene expression in human articular chondrocytes. Rheumatol Int 33:517–522

    Article  PubMed  CAS  Google Scholar 

  8. Dechow TN, Pedranzini L, Leitch A et al (2004) Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci U S A 101:10602–10607

    Article  PubMed  CAS  Google Scholar 

  9. Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543

    Article  PubMed  CAS  Google Scholar 

  10. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  11. Malemud CJ (2006) Matrix metalloproteinases: role in skeletal development and growth plate disorders. Front Biosci 11:1702–1715

    Article  PubMed  CAS  Google Scholar 

  12. Brauer PR (2006) MMPs - role in cardiovascular development and disease. Front Biosci 11:447–478

    Article  PubMed  CAS  Google Scholar 

  13. Fingleton B (2006) Matrix metalloproteinases: role in cancer and metastasis. Front Biosci 11:479–491

    Article  PubMed  CAS  Google Scholar 

  14. Gasche I, Soccal PM, Kanemitsu M et al (2006) Matrix metalloproteinases and diseases of the central nervous system with special emphasis on ischemic brain. Front Biosci 11:1289–1301

    Article  PubMed  CAS  Google Scholar 

  15. Malemud CJ, Pearlman E (2009) Targeting JAK/STAT signaling pathway in inflammatory diseases. Curr Signal Transduct Ther 4:201–221

    Article  CAS  Google Scholar 

  16. Tong KM, Chen CP, Huang KC et al (2011) Adiponectin increases MMP-3 expression in human chondrocytes through AdipoR1 signaling pathway. J Cell Biochem 112:1431–1440

    Article  PubMed  CAS  Google Scholar 

  17. Haeusgen W, Herdegen T, Waetzig V (2011) The bottleneck of JNK signaling: molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol 90:536–544

    Article  PubMed  CAS  Google Scholar 

  18. Guma M, Firestein GS (2012) c-Jun-N-terminal kinase in inflammation and rheumatic diseases. Open Rheumatol J 6:220–231

    Article  PubMed  CAS  Google Scholar 

  19. Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans 40:85–89

    Article  PubMed  CAS  Google Scholar 

  20. Martel-Pelletier J, Welsch DJ, Pelletier J-P (2001) Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol 15:805–829

    Article  PubMed  CAS  Google Scholar 

  21. Pozgan U, Caglic D, Rozman B et al (2010) Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 391:571–579

    Article  PubMed  CAS  Google Scholar 

  22. Kokkonen H, Soderstrom I, Rocklov J et al (2010) Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum 62:383–391

    PubMed  CAS  Google Scholar 

  23. Berenbaum F (2011) Osteoarthritis year 2010 in review: pharmacological therapies. Osteoarthritis Cartilage 19:361–365

    Article  PubMed  CAS  Google Scholar 

  24. Westermarck J, Kähäri VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  25. Overall CM, Wrana JL, Sodek J (1991) Transcriptional and post-translational regulation of 72 kDa gelatinase/Type IV collagenase by transforming growth factor-β1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem 266:14064–14071

    PubMed  CAS  Google Scholar 

  26. Delaney AM, Brinckerhoff CE (1992) Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts. J Cell Biochem 50:400–410

    Article  Google Scholar 

  27. Bui C, Barter MJ, Scott JL et al (2012) cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J 26:3000–3011

    Article  PubMed  CAS  Google Scholar 

  28. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  29. Malemud CJ, Schulte ME (2008) Is there a final common pathway for arthritis? Future Rheumatol 3:253–268

    Article  CAS  Google Scholar 

  30. Chakraborti S, Mandal M, Das S et al (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  PubMed  CAS  Google Scholar 

  31. Vincenti MP, Brinckerhoff CE (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 4:157–164

    Article  PubMed  CAS  Google Scholar 

  32. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23:471–478

    Article  PubMed  CAS  Google Scholar 

  33. Harris SJ, Foster JG, Ward SG (2009) PI3K isoforms as drug targets in inflammatory diseases: lessons from pharmacological and genetic strategies. Curr Opin Investig Drugs 10:1151–1162

    PubMed  CAS  Google Scholar 

  34. Wisler BA, Dennis JE, Malemud CJ (2011) New organ-specific pharmacological strategies interfering with signaling pathways in inflammatory disorders/autoimmune disorders. Curr Signal Transduct Ther 6:279–291

    Article  CAS  Google Scholar 

  35. Malemud CJ (2012) Apoptosis resistance in rheumatoid arthritis synovial tissue. J Clin Cell Immunol S3:006

    Google Scholar 

  36. Kim KS, Oh DH, Choi HM et al (2009) Pyrrolidine dithiocarbamate, a NF-κB inhibitor, upregulates MMP-1 and MMP-13 in IL-1β-stimulated rheumatoid arthritis fibroblast-like synoviocytes. Eur J Pharmacol 613:167–175

    Article  PubMed  CAS  Google Scholar 

  37. Ducy P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219:461–471

    Article  PubMed  CAS  Google Scholar 

  38. Jimenez MJ, Balbin M, Lopez JM et al (1999) Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 19:4431–4442

    PubMed  CAS  Google Scholar 

  39. Jimenez MJG, Balbin M, Alvarez J et al (2001) A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J Cell Biol 155:1333–1344

    Article  PubMed  CAS  Google Scholar 

  40. Selvamurugan N, Kwok S, Alliston T et al (2004) Transforming growth factor-β1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between Smad and MAPK signaling pathways and their components, Smad2 and Runx2. J Biol Chem 279:19327–19334

    Article  PubMed  CAS  Google Scholar 

  41. Selvarmurugan N, Jefcoat SC, Kwok S et al (2006) Overexpression of Runx2 directed by the matrix metalloproteinase-13 promoter containing the AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo. J Cell Biochem 99:545–557

    Article  Google Scholar 

  42. Schmucker AC, Wright JB, Cole MD et al (2012) Distal interleukin-1β (IL-1β) response element of human matrix metalloproteinase-13 (MMP-13) binds activator protein 1 (AP-1) transcription factors and regulates gene expression. J Biol Chem 287:1189–1197

    Article  PubMed  CAS  Google Scholar 

  43. Varghese S, Rydziel S, Canalis E (2000) Basic fibroblast growth factor stimulates collagenase-3 promoter activity in osteoblasts through an activator protein-1 binding site. Endocrinology 141:2185–2191

    Article  PubMed  CAS  Google Scholar 

  44. Manabe N, Oda H, Nakamura K et al (1999) Involvement of fibroblast growth factor-2 in joint destruction of rheumatoid arthritis patients. Rheumatology (Oxford) 38:714–720

    Article  CAS  Google Scholar 

  45. Malemud CJ (2007) Growth hormone, VEGF and FGF: involvement in rheumatoid arthritis. Clin Chim Acta 375:10–19

    Article  PubMed  CAS  Google Scholar 

  46. Lim H, Kim HP (2011) Matrix metalloproteinase-13 expression in IL-1β-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways. Arch Pharm Res 34:109–117

    Article  PubMed  CAS  Google Scholar 

  47. Porte D, Tuckermann J, Becker M et al (1999) Both AP-1 and Cbfa1-like factors are required for the induction of interstitial collagenase by parathyroid hormone. Oncogene 18:667–678

    Article  PubMed  CAS  Google Scholar 

  48. Shah R, Alvarez M, Jones DR et al (2004) Nmp4/CIZ regulation of matrix metalloproteinase 13 (MMP-13) response to parathyroid hormone in osteoblasts. Am J Physiol Endocrinol Metab 287:E289–E296

    Article  PubMed  CAS  Google Scholar 

  49. Alvarez M, Shah R, Rhodes SJ et al (2005) Two promoters control the Nmp4/CIZ transcription factor gene. Gene 347:43–54

    Article  PubMed  CAS  Google Scholar 

  50. Charoonpatrapong-Panyayong K, Shah R, Yang J et al (2007) Nmp4/CIZ contributes to fluid shear stress induced MMP-13 gene induction in osteoblasts. J Cell Biochem 102:1202–1213

    Article  PubMed  CAS  Google Scholar 

  51. Tymms MJ, Ng AY, Thomas RS et al (1997) A novel epithelial-expressed ETS gene ELF3: human and murine cDNA sequences, murine genomic organization, human mapping to 1q32.2 and expression in tissues and cancer. Oncogene 15:2449–2462

    Article  PubMed  CAS  Google Scholar 

  52. Singh S, Barrett J, Sakata K et al (2002) ETS proteins and MMPs: partners in invasion and metastasis. Curr Drug Targets 3:359–367

    Article  PubMed  CAS  Google Scholar 

  53. Iwai S, Amekawa S, Yomogida K et al (2008) ESE-1 inhibits the invasion of oral squamous cell carcinoma in conjunction with MMP-9 suppression. Oral Dis 14:144–149

    Article  PubMed  CAS  Google Scholar 

  54. Otero M, Plumb DA, Tsuchimochi K et al (2012) E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under pro-inflammatory stress. J Biol Chem 287:3559–3572

    Article  PubMed  CAS  Google Scholar 

  55. Nishizawa M, Kataoka K, Goto N et al (1989) v-Maf, a viral oncogene that encodes a “leucine zipper” motif. Proc Natl Acad Sci U S A 86:7711–7715

    Article  PubMed  CAS  Google Scholar 

  56. Kurokawa H, Motohashi H, Sueno S et al (2009) Structural basis of alternative DNA recognition by Maf transcription factors. Mol Cell Biol 29:6232–6244

    Article  PubMed  CAS  Google Scholar 

  57. Hedge SP, Kumar A, Kurschner C et al (1998) c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation. Mol Cell Biol 18:2729–2737

    PubMed  CAS  Google Scholar 

  58. Akiyama H, Lefebvre V (2011) Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Res 29:390–395

    Google Scholar 

  59. Huang W, Lu N, Eberspaecher H et al (2002) A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. J Biol Chem 277:50668–50675

    Article  PubMed  CAS  Google Scholar 

  60. Kerppola TK, Curran T (1994) Maf and Nrl can bind to AP-1 sites and form heterodimers with Foc and Jun. Oncogene 9:675–684

    PubMed  CAS  Google Scholar 

  61. Li T, Xiao J, Wu Z et al (2010) Transcriptional activation of human MMP-13 gene expression by c-Maf in osteoarthritic chondrocytes. Connect Tissue Res 51:48–54

    Article  PubMed  CAS  Google Scholar 

  62. Dong JT, Chen C (2009) Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 66:2691–2706

    Article  PubMed  CAS  Google Scholar 

  63. Shinoda Y, Ogata N, Higashikawa A et al (2008) Kruppel-like factor 5 causes cartilage degradation through transactivation of matrix metalloproteinase 9. J Biol Chem 283: 24682–24689

    Article  PubMed  CAS  Google Scholar 

  64. Malemud CJ (2010) Suppression of autoimmune arthritis by small molecule inhibitors of the JAK/STAT pathway. Pharmaceuticals 3:1446–1455

    Article  CAS  Google Scholar 

  65. Curtis JR, van der Helm-van Mil AH, Knevel R et al (2012) Validation of a novel multibiomarker test to assess rheumatoid arthritis disease activity. Arthritis Care Res 64:1794–1803

    Article  Google Scholar 

  66. Malemud CJ, Reddy SK (2008) Targeting cytokines, chemokines and adhesion molecules in rheumatoid arthritis. Curr Rheumatol Rev 4:219–234

    Article  CAS  Google Scholar 

  67. Wullaert A, Bonnet MC, Pasparakis M (2011) NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 21:146–158

    Article  PubMed  CAS  Google Scholar 

  68. Gilmore TD, Garbati MR (2011) Inhibition of NF-κB signaling as a strategy in disease therapy. Curr Top Microbiol Immunol 349:245–263

    PubMed  CAS  Google Scholar 

  69. Rahman A, Fazal F (2011) Blocking NF-κB: an inflammatory issue. Proc Am Thorac Soc 8:497–503

    Article  PubMed  CAS  Google Scholar 

  70. Raskatov JA, Meier JL, Puckett JW et al (2012) Modulation of NF-κB-dependent gene transcription using programmable DNA minor groove binders. Proc Natl Acad Sci U S A 109:1023–1028

    Article  PubMed  CAS  Google Scholar 

  71. Lecka-Czernik B, Gubrij I, Moerman EJ et al (1999) Inhibition of Osf2/Cbfa1 expression and terminal differentiation by PPARgamma2. J Cell Biochem 74:357–371

    Article  PubMed  CAS  Google Scholar 

  72. Tintut Y, Parhami F, Le V et al (1999) Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. J Biol Chem 274:28875–28879

    Article  PubMed  CAS  Google Scholar 

  73. Alliston T, Choy L, Ducy P et al (2001) TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast formation. EMBO J 20:2254–2272

    Article  PubMed  CAS  Google Scholar 

  74. Gilbert L, He X, Farmer P et al (2002) Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumor necrosis factor-α. J Biol Chem 277:2695–2701

    Article  PubMed  CAS  Google Scholar 

  75. Varanasi SS, Datta HK (2005) Characterisation of cytosolic FK506 binding protein 12 and its role in modulating expression of Cbfa1 and osterix in ROS 17/2.8 cells. Bone 36:243–253

    Article  PubMed  CAS  Google Scholar 

  76. Lin L, Chen L, Wang H et al (2006) Adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 inhibits the formation of heterotopic ossification in animal model. Biochem Biophys Res Commun 349:564–572

    Article  PubMed  CAS  Google Scholar 

  77. Luan Y, Yu XP, Yang N et al (2008) p204 protein overcomes the inhibition of core binding factor α1-mediated osteogenic differentiation by Id helix-loop-helix proteins. Mol Biol Cell 19:2113–2126

    Article  PubMed  CAS  Google Scholar 

  78. Ahmad R, Sylvester J, Zafarullah M (2007) MyD88, IRAK1 and TRAF6 knockdown in human chondrocytes inhibits interleukin-1-induced matrix metalloproteinase-13 gene expression and promoter activity by impairing MAP kinase activation. Cell Signal 19:2549–2557

    Article  PubMed  CAS  Google Scholar 

  79. Schett G, Zwerina J, Firestein GS (2008) The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 67:909–916

    Article  PubMed  CAS  Google Scholar 

  80. Thalhamer T, McGrath MA, Harnett MM (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford) 47:409–414

    Article  CAS  Google Scholar 

  81. Clark AR, Dean JL (2012) The p38 MAPK pathway in rheumatoid arthritis: a sideways look. Open Rheumatol J 6:209–219

    Article  PubMed  CAS  Google Scholar 

  82. Liacini A, Sylvester J, Li WQ et al (2002) Inhibition of interleukin-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21:251–262

    Article  PubMed  CAS  Google Scholar 

  83. Palanki MS (2002) Inhibitors of AP-1 and NF-κB mediated transcriptional activation: therapeutic potential in autoimmune disease and structural diversity. Curr Med Chem 9:219–227

    Article  PubMed  CAS  Google Scholar 

  84. Malemud CJ (2006) Small molecular weight inhibitors of stress-activated and mitogen-activated protein kinases. Mini Rev Med Chem 6:689–698

    Article  PubMed  CAS  Google Scholar 

  85. Malemud CJ (2007) Inhibitors of stress-activated/mitogen-activated protein kinase pathways. Curr Opin Pharmacol 7:339–343

    Article  PubMed  CAS  Google Scholar 

  86. Hui A, Min WX, Tang J et al (1998) Inhibition of activator protein 1 activity by paclitaxel suppresses interleukin-1-induced collagenase and stromelysin activity by bovine chondrocytes. Arthritis Rheum 41:869–876

    Article  PubMed  CAS  Google Scholar 

  87. Ahmed S, Anuntiyo J, Malemud CJ et al (2005) Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review. Evid Based Complement Alternat Med 2:301–308

    Article  PubMed  Google Scholar 

  88. Ahmed S, Wang N, Lalonde M et al (2004) Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1β-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther 308:767–773

    Article  PubMed  CAS  Google Scholar 

  89. Boileau C, Pelletier J-P, Tardif F et al (2005) The regulation of human MMP-13 by licofelone, an inhibitor of cyclooxygenases and 5-lipoxygenase, in human osteoarthritic chondrocytes is mediated by the inhibition of the p38 MAP kinase signalling pathway. Ann Rheum Dis 64:891–898

    Article  PubMed  CAS  Google Scholar 

  90. Fosang AJ, Neame PJ, Last K et al (1992) The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases and cathepsin B. J Biol Chem 267:19470–19474

    PubMed  CAS  Google Scholar 

  91. Fosang AJ, Last K, Fujii Y et al (1998) Membrane-type MMP- (MMP-14) cleaves at three sites in the aggrecan interglobular domain. FEBS Lett 430:186–190

    Article  PubMed  CAS  Google Scholar 

  92. Little CB, Flannery CR, Hughes CE et al (1999) Aggrecanase versus matrix metalloproteinases are involved in the catabolism of the interglobular domain of aggrecan in vitro. Biochem J 344:61–68

    Article  PubMed  CAS  Google Scholar 

  93. Gilmore TD, Herscovitch M (2006) Inhibitors of NF-κB signaling: 785 and counting. Oncogene 25:6887–6899

    Article  PubMed  CAS  Google Scholar 

  94. Sato H, Seiki M (1993) Regulatory mechanism of 92 kDa Type V collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8:395–405

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The Arthritis Research Laboratory at Case Western Reserve University School of Medicine is supported by an investigator-initiated project grant to Charles J. Malemud, Ph. D. from Genentech/Roche Group (South San Francisco, CA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Malemud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malemud, C.J. (2013). Regulation of Chondrocyte Matrix Metalloproteinase Gene Expression. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_5

Download citation

Publish with us

Policies and ethics