Skip to main content
Log in

A simplified method for growth of human microvascular endothelial cells results in decreased senescence and continued responsiveness to cytokines and growth factors

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Human dermal microvascular endothelial cells are used to analyze the functions of microvascular endothelium in vitro. However, the low yield and short lifespan of these cells in culture has limited the types of analysis that could be performed. Human microvascular endothelial cells are typically grown in media containing supplements such as dibutyryl cyclic AMP, hydrocortisone, bovine brain extract, and antifungal agents, each of which increase the complexity of experimental design and interpretation of results. In the present study, endothelial cells were transferred after Ulex europeus-I selection into a simplified medium consisting of Endothelial Basal Medium 131, 10% fetal bovine serum, and 2 ng/ml basic fibroblast growth factor and analyzed over 3 mo. The human microvascular endothelial cells expressed the endothelial markers von Willebrand factor, CD31, P-selectin, and E-selectin. In addition, the cells showed increased proliferation in the presence of basic fibroblast growth factor (0.5 ng/ml) or vascular endothelial cell growth factor (10 ng/ml). Tumor necrosis factor-α-induced expression of E-selectin was similar in cells at Passages 3, 6, and 12, indicating that the cells maintained responsiveness to cytokines over several weeks. Furthermore, the endothelial cells attained a typical cobblestone morphology with increased cellular density and also formed capillarylike tubes on Matrigel. In summary, the human dermal microvascular endothelial cells display the expected endothelial characteristics when grown for several passages and, therefore, provide a valuable in vitro model for human microvascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albelda, S. M.; Muller, W. A.; Buck, C. A., et al. Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J. Cell Biol. 114:1059–1068; 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Bensch, K. G.; Davison, P. M.; Karasek, M. A. Factors controlling the in vitro growth pattern of human microvascular endothelial cells. J. Ultrastruct. Res. 82:76–89; 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Bevilacqua, M. P.; Stengelin, S.; Gimbrone, M. A., Jr., et al. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160–1165; 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Bischoff, J.; Brasel, C.; Kräling, B., et al. E-selectin is upregulated in proliferating endothelial cells in vitro. Microcirculation 4:279–287; 1997.

    PubMed  CAS  Google Scholar 

  5. Charo, I. F.; Shak, S.; Karasek, M. A., et al. Prostaglandin I2 is not a major metabolite of arachidonic acid in cultured endothelial cells from human foreskin microvessels. J. Clin. Invest. 74:914–919; 1984.

    PubMed  CAS  Google Scholar 

  6. Davison, P. M.; Bensch, K.; Karasek, M. A. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J. Invest. Dermatol. 75:316–321; 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Davison, P. M.; Karasek, M. A. Human dermal microvascular endothelial cells in vitro: effect of cyclic AMP on cellular morphology and proliferation rate. J. Cell. Physiol. 106:253–258; 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Detmar, M.; Brown, L. F.; Berse, B., et al. Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin. J. Invest. Dermatol. 108:263–268; 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Ferrara, N.; Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161:851–858; 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1:27–31; 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Gerritsen, M. E. Functional heterogeneity of vascular endothelial cells. Biochem. Pharmacol. 36:2702–2711; 1987.

    Article  Google Scholar 

  12. Gerritsen, M. E.; Shen, C.-P.; McHugh, M. C., et al. Activation-dependent isolation and culture of murine pulmonary microvascular endothelium. Microcirculation 2:151–163; 1995.

    PubMed  CAS  Google Scholar 

  13. Gimbrone, M. A.; Cotran, R. S.; Folkman, J. Human vascular endothelial cell culture. J. Cell Biol. 60:673–684; 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Goto, F.; Goto, K.; Weindel, K., et al. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab. Invest. 69:508–517; 1993.

    PubMed  CAS  Google Scholar 

  15. Grimwood, J.; Bicknell, R.; Rees, M. C. P. The isolation, characterization and culture of human decidual endothelium. Hum. Reprod. 10:2142–2148; 1995.

    PubMed  CAS  Google Scholar 

  16. Hewett, P. W.; Murray, J. C. Human lung microvessel endothelial cells: isolation, culture, and characterization. Microvasc. Res. 46:89–102; 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Ingber, D. E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Ingber, D.; Fujita, T.; Kishimoto, S., et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348:555–557; 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Jackson, C. J.; Garbett, P. K.; Nissen, B., et al. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium. J. Cell Sci. 96:257–262; 1990.

    PubMed  Google Scholar 

  20. Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.

    PubMed  CAS  Google Scholar 

  21. Jaffe, E. A.; Hoyer, L. W.; Nachman, R. L. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc. Natl. Acad. Sci. USA 71:1906–1909; 1974.

    Article  PubMed  CAS  Google Scholar 

  22. Joo, F. The cerebral microvessels in culture, an update. J. Neurochem. 58:1–17; 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Kacemi, A.; Challier, J.-C.; Galtier, M., et al. Culture of endothelial cells from placental microvessels. Cell Tissue Res. 283:183–190; 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Knedler, A.; Ham, R. G. Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum. In Vitro Cell. Dev. Biol. 23:481–491; 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Kräling, B. M.; Jimenez, S. A.; Sorger, T., et al. Isolation and characterization of microvascular endothelial cells from the adult human dermis and from skin biopsies of patients with systemic sclerosis. Lab. Invest. 71:745–754; 1994.

    PubMed  Google Scholar 

  26. Kräling, B. M.; Razon, M. J.; Boon, L. M., et al. E-selectin is present in proliferating endothelial cells in human hemangiomas. Am. J. Pathol. 148:1181–1191; 1996.

    PubMed  Google Scholar 

  27. Kubota, Y.; Kleinman, H. K.; Martin, G. S., et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1598; 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Lawley, T. J.; Kubota, Y. Cutaneous microvascular endothelial cells. In: Ryan, U. S., ed. Endothelial cells. Vol. III. Boca Raton, FL: CRC Press; 1988:229–240.

    Google Scholar 

  29. McEver, R. P.; Beckstead, J. H.; Moore, K. L., et al. GMP-140, a platelet a-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Invest. 84:92–99; 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Muller, W. A.; Ratti, C. M.; McDonnell, S. L., et al. A human endothelial cell restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J. Exp. Med. 170:399–414; 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Newman, P. J.; Berndt, M. C.; Gorski, J., et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247:1219–1222; 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Oliver, M. H.; Harrison, N. K.; Bishop, J. E., et al. A rapid and convenient assay for counting cells cultured in microwell plates: application for assessment of growth factors. J. Cell Sci. 92:513–518; 1989.

    PubMed  Google Scholar 

  33. O’Reilly, M. S.; Boehm, T.; Shing, Y., et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285; 1997.

    Article  PubMed  CAS  Google Scholar 

  34. O’Reilly, M. S.; Holmgren, L.; Shing, Y., et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328; 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Pepper, M. S.; Ferrarra, N.; Orci, L., et al. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 189:824–831; 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Rafii, S.; Shapiro, F.; Rimarachin, J., et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84:10–19; 1994.

    PubMed  CAS  Google Scholar 

  37. Risau, W. Differentiation of endothelium. FASEB J. 9:926–933; 1995.

    PubMed  CAS  Google Scholar 

  38. Rodgers, G. M.; Shuman, M. A. Prothrombin is activated on vascular endothelial cells by factor Xa and calcium. Proc. Natl. Acad. Sci. USA 80:7001–7005; 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Schweitzer, K. M.; Dräger, A. M.; van der Valk, P., et al. Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am. J. Pathol. 148:165–175; 1996.

    PubMed  CAS  Google Scholar 

  40. Schweitzer, C. M.; van der Schoot, C. E.; Dräger, A. M., et al. Isolation and culture of human bone marrow endothelial cells. Exp. Hematol. 23:41–48; 1995.

    PubMed  CAS  Google Scholar 

  41. Shing, Y.; Folkman, J.; Sullivan, R., et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223:1296–1299; 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:101–314; 1994.

    Article  Google Scholar 

  43. Swerlick, R. A.; Lee, K. H.; Li, L.-J., et al. Regulation of vascular cell adhesion molecule 1 on human dermal microvascular endothelial cell. J. Immunol. 149:698–705; 1992.

    PubMed  CAS  Google Scholar 

  44. Swerlick, R. A.; Lee, K. H.; Wick, T. M., et al. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J. Immunol. 148:78–83; 1992.

    PubMed  CAS  Google Scholar 

  45. Tedder, T. F.; Steeber, D. A.; Chen, A., et al. The selectins: vascular adhesion molecules. FASEB J. 9:866–873; 1995.

    PubMed  CAS  Google Scholar 

  46. Thornton, S. C.; Mueller, S. N.; Levine, E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222:623–625; 1983.

    Article  PubMed  CAS  Google Scholar 

  47. Valyi-Nagy, I. T.; Herlyn, M. Regulation of growth and phenotype of normal human melanocytes in culture. In: Nathanson, L., ed. Melanoma research: genetics, growth factors, metastasis, and antigens. Boston, MA: Kluwer Academic Publishers; 1991:85–101.

    Google Scholar 

  48. Wada, H.; Wakita, Y.; Shiku, H. Tissue factor expression in endothelial cells in health and disease. Blood Coagul. & Fibrinolysis 6:S26-S31; 1995.

    Article  CAS  Google Scholar 

  49. Weidner, N. Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol. 147:9–19; 1995.

    PubMed  CAS  Google Scholar 

  50. Wu, K. K.; Thiagarajan, P. Role of endothelium in thrombosis and hemostasis. Annu. Rev. Med. 47:315–331; 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kräling, B.M., Bischoff, J. A simplified method for growth of human microvascular endothelial cells results in decreased senescence and continued responsiveness to cytokines and growth factors. In Vitro Cell.Dev.Biol.-Animal 34, 308–315 (1998). https://doi.org/10.1007/s11626-998-0007-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0007-z

Key words

Navigation