Skip to main content
Log in

Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

An optimized basal nutrient medium, MCBD 131, has been developed that supports clonal growth of human microvascular endothelial cells (HMVEC) with as little as 0.7% dialyzed fetal bovine serum (dFBS) when also supplemented with 10 ng/ml epidermal growth factor (EGF) and 1 μg/ml hydrocortisone. An extensive initial survey of available media showed that MCDB 402, a medium optimized for low-serum growth of Swiss 3T3 cells, supported the best clonal growth of HMVEC with 10% dFBS. Quantitative adjustment of the composition of MCDB 402 for improved clonal growth of HMVEC with reduced amounts of dFBS resulted in development of MCDB 131. Although many different adjustments contributed to the optimal properties of MCDB 131 for growth of HMVEC, the most unusual feature of this medium is its high magnesium concentration. A major benefit was achieved by increasing Mg2+ from 0.8 mM in MCDB 402 to 10.0 mM in MCDB 131. In the absence of defined supplements, MCDB 131 supports good clonal growth of HMVEC with 2% dFBS. This can be reduced to 0.7% by adding EGF and hydrocortisone, which act synergistically to improve growth with low levels of dFBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agy, P. C.; Shipley, G. D.; Ham, R. G. Protein-free medium for C-1300 mouse neuroblastoma cells. In Vitro 17:671–680; 1981.

    PubMed  CAS  Google Scholar 

  2. Bennian, S.; Fitzpatrick, J.; harbell, J., et al. The effect of UVB on 6-keto-PGF1 production by cultured human endothelial cells. J. Invest. Dermatol. 82:428 (abstract); 1984.

    Google Scholar 

  3. Bettger, W. J.; Boyce, S. T.; Walthall, B. J., et al. Rapid clonal growth and serial passage of human diploid fibroblasts in a lipid-enriched synthetic medium supplemented with epidermal growth factor, insulin, and dexamethasone. Proc. Natl. Acad. Sci. USA 78:5588–5592; 1981.

    Article  PubMed  CAS  Google Scholar 

  4. bjornthorp, P.; Hansson, G. K.; Jonasson, L., et al. Isolation and characterization of endothelial cells from the epididymal fat pad of the rat. J. Lipid Res. 24:105–112; 1983.

    Google Scholar 

  5. Booyse, F. M.; Sedlak, B. J.; Rafelson, M. E. Culture of arterial endothelial cells. Characterization and growth of bovine aortic cells. Thromb. Diath. Haemorrh. 34:825–839; 1975.

    PubMed  CAS  Google Scholar 

  6. Bowman, P. D.; Betz, L. A.; Ar, D., et al. Primary culture of capillary endothelium from rat brain. In Vitro 17:353–362; 1981

    Article  PubMed  CAS  Google Scholar 

  7. Bowen-Pope, D. F.; Vidair, C.; Sanui, H., et al. Separate roles for calcium and magnesium in their synergistic effect on uridine uptake by cultured cells: significance for growth control. Proc. Natl. Acad. Sci. USA 76:1308–1312; 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Boyce, S. T.; Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined culture and serum-free serial culture. J. Invest. Dermatol. 81 (Suppl):33s-40s; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Davison, P. M.; Bensch, K.; Karasek, U. A. Isolation and growth of endothelial cells from the microvessels on the newborn human foreskin in cell culture. J. Invest. Dermatol. 75:316–321; 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Diglio, C. A.; Grammas, P.; Giacomelli, F., et al. Primary culture of rat cerebral microvascular endothelial cells; isolation, growth and characterization. Lab. Invest. 46:554–563; 1982.

    PubMed  CAS  Google Scholar 

  11. Folkman, J.; Haudenschild, C. C.; Zetter, B. R. Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76:5217–5221; 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Frank, R. N.; Kinsey, V. E.; Frank, K. W., et al. In vitro proliferation of endothelial cells from kitten retinal capillaries. Invest. Ophthalmol. Vis. Sci. 18:1195–1200; 1979.

    PubMed  CAS  Google Scholar 

  13. Gimbrone, M. A. Culture of vascular endothelium. Prog. Hemost. Thromb. 3:1–28; 1976.

    PubMed  Google Scholar 

  14. Goetz, I. E.; Warren, J.; Estrada, C., et al. Long-term serial cultivation of arterial and capillary endothelium from adult bovine brain. In Vitro 21:172–180; 1985.

    CAS  Google Scholar 

  15. Goldsmith, H. S.; Griffith, A. L.; Kupferman, A., et al. Lipid angiogenic factor from omentum. JAMA 252:2034–2036; 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Gospodarowicz, D.; Brown, K. D.; Birdwell, C. R., et al. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J. Cell Biol. 77:744–788; 1978.

    Article  Google Scholar 

  17. Gospodarowicz, D.; Greenburg, G.; Birdwell, C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 38:4155–4171; 1978.

    PubMed  CAS  Google Scholar 

  18. Graves, D.; Ham, R. G. Serum-free clonal growth of chicken embryo fibroblasts. In Vitro 18:305 (Abstract #127); 1982.

    Google Scholar 

  19. Ham, R. G. Clonal growth of mammalian cells in chemically defined synthetic medium. Proc. Natl. Acad. Sci. USA 53:288–293; 1965.

    Article  PubMed  CAS  Google Scholar 

  20. Ham, R. G. Nutritional requirements of primary cultures. A neglected problem of modern biology. In Vitro 10:119–129; 1974.

    Article  PubMed  CAS  Google Scholar 

  21. Ham, R. G. Survival and growth requirements of non-transformed cells. Hdbk. Exp. Pharmacol. 57:13–88; 1981.

    Google Scholar 

  22. Ham, R. G.. Importance of the basal nutrient medium in the design of hormonally defined media. Cold Spring Harbor Conf. Cell Prolifer. 9:39–60; 1982.

    CAS  Google Scholar 

  23. Ham, R. G. Growth of normal human cells in defined media. In: Fischer, G.; Weiser, R. G., eds. Hormonally defined media—A tool in cell biology. Berlin: Springer Verlag; 1983:16–30.

    Google Scholar 

  24. Ham, R. G. Selective media. In: Pretlow, T. G., II; Pretlow, T. P., eds. Cell separation: Methods and selected applications, vol. 3. New York: Academic Press; 1984:209–236.

    Google Scholar 

  25. Ham, R. G. Methods for formulation of basal nutrient media. In: Barnes, D.; Sirbasku, D.; Sato, G., eds. Cell culture methods for molecular and cell biology, vol. 1. New York: A. R. Liss; 1984:3–21.

    Google Scholar 

  26. Ham, R. G.; McKeehan, W. L. Development of improved medium and culture conditions for clonal growth of normal human diploid cells. In Vitro 14:11–22; 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Ham, R. G.; McKeehan, W. L. Nutritional requirements for clonal growth of non-transformed cells. In: Katsuta, H., ed. Nutritional requirements of cultured cells. Tokyo: Japan Scientific Societies Press; 1978:63–115.

    Google Scholar 

  28. Ham, R. G.; McKeehan, W. L. Media and growth requirements. Methods Enzymol. 48:44–93; 1979.

    Google Scholar 

  29. Hamilton, W. G.; Ham, R. G. Clonal growth of Chinese hamster cell lines in protein-free media. In Vitro 13:537–547; 1977.

    PubMed  CAS  Google Scholar 

  30. Hammond, S. L.; Ham, R. G.; Stampfer, M. L. Serum-free growth of human mammary epithelial cells: Rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Hoshi, H.; McKeehan, W. L. Isolation, growth requirements, cloning, prostacyclin production and life span of human adult endothelial cells in low serum culture medium. In Vitro 22:51–56; 1986.

    CAS  Google Scholar 

  32. Jaffe, E. A.; Nachman, R. I.; Becker, C. G., et al. Culture of human endothelial cells from umbilical veins. J. Clin. Invest. 52:2745; 1973.

    PubMed  CAS  Google Scholar 

  33. Jennings, S. D.; Ham, R. G. Clonal growth of primary cultures of human hyaline chondrocytes in a defined medium. Cell Biol. Int. Rep. 7:149–159; 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Kern, P. A.; Knedler, A.; Eckel, R. H. Isolation and culture of microvascular endothelium from human adipose tissue. J. Clin. Invest. 71:1822–1829; 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Knedler, A.; Tonnesen, M. G.; Haslett, C., et al. Rabbit microvascular endothelial cells: Isolation, characterization, and interaction with neutrophils. Fed. Proc. 44:1494 (Abstract No. 6338); 1985.

    Google Scholar 

  36. Marks, R. M.; Czerniecki, M.; Penny, R. Human dermal microvascular endothelial cells: An improved method for tissue culture and a description of some singular properties in culture. In Vitro 21:627–635; 1985.

    CAS  Google Scholar 

  37. Maruyama, Y. The human endothelial cell in culture. Z. Zellforsch. 60:69–79; 1963.

    Article  PubMed  CAS  Google Scholar 

  38. McAuslan, B. R.; Reilly, W. Selenium-induced cell migration and proliferation: Relevance to angiogenesis and microangiopathy. Microvasc. Res. 32:112–120; 1986.

    Article  PubMed  CAS  Google Scholar 

  39. McAuslan, B.R.; Bender, V.; Reilly, W., et al. New functions of epidermal growth factor: Stimulation of capillary endothelial cell migration and matrix dependent proliferation. Cell Biol. Int. Rep. 9:175–182; 1985.

    Article  PubMed  CAS  Google Scholar 

  40. McKeehan, W.L.; Ham, R. G. Methods for reducing the serum requirement for growth in vitro of nontransformed diploid fibroblasts. Dev. Biol. Stand. 37:96–108; 1977.

    Google Scholar 

  41. McKeehan, W. L. McKeehan, K. A.; Hammond, S. L., et al. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum protein. In Vitro 13:399–416; 1977.

    Article  PubMed  CAS  Google Scholar 

  42. Peehl, D. M.; Ham, R. G. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro 16:526–540; 1980.

    Article  PubMed  CAS  Google Scholar 

  43. Pitas, R. E.; Innerarity, T. L.; Weinstein, J. N., et al. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophagesin vitro by fluorescence microscopy. Arteriosclerosis 1:177–185; 1981.

    PubMed  CAS  Google Scholar 

  44. Rubin, H.; Koide, T. Mutual potentiation by magnesium and calcium of growth in animal cells. Proc. Natl. Acad. Sci. USA 73:168–172; 1976.

    Article  PubMed  CAS  Google Scholar 

  45. Rubin, A. H.; Terasaki, M.; Sanui, H. Magnesium reverses inhibitory effects of calcium deprivation on coordinate response of 3T3 cells to serum. Proc. Natl. Acad. Sci. USA 75:4379–4383; 1978.

    Article  PubMed  CAS  Google Scholar 

  46. Rubin, A. H.; Terasaki, M.; Sanui, H. Major intracellular cations and growth control: Correspondence among magnesium content, protein synthesis, and the onset of DNA synthesis in BALB/c 3T3 cells. Proc. Natl. Acad. Sci. USA 76:3917–3921; 1979.

    Article  PubMed  CAS  Google Scholar 

  47. Sherer, G. K.; Fitzharris, T. P.; Faulk, W. P., et al. Cultivation of microvascular endothelial cells from human preputial skin. In Vitro 16:675–684; 1980.

    Article  PubMed  CAS  Google Scholar 

  48. Shipley, G. D.; Ham, R. G. Improved medium and culture conditions for clonal growth with minimal serum protein and for enhanced serum-free survival of Swiss 3T3 cells. In Vitro 17:656–670; 1981.

    PubMed  CAS  Google Scholar 

  49. Tsao, M. C.; Walthall, B. J.; Ham, R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell Physiol. 110:219–229; 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Underwood, E. J. Trace elements in human and animal nutrition, 4th ed. New York: Academic Press; 1977.

    Google Scholar 

  51. Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Wagner, R. C.; Matthews, M. A. The isolation and culture of capillary endothelium from epididymal fat. Microvasc. Res. 10:286–297; 1975.

    Article  PubMed  CAS  Google Scholar 

  53. Wechezak, A. R.; Mansfield, P. B. Isolation and growth characteristics of cell lines from bovine venous endothelium. In Vitro 9:39–45; 1973.

    Article  PubMed  CAS  Google Scholar 

  54. Weinstein, R.; Stemerman, M. B.; Maciag, T. Hormonal requirements for growth of arterial smooth muscle cells in vitro: an endocrine approach to atherosclerosis. Science 212:818–820; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by grant CA 15305 from the National Cancer Institute, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knedler, A., Ham, R.G. Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum. In Vitro Cell Dev Biol 23, 481–491 (1987). https://doi.org/10.1007/BF02628418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628418

Key words

Navigation