Skip to main content
Log in

Characterization of human osteoblastic cells: Influence of the culture conditions

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Human osteoblastic cells were isolated enzymatically from adult human spongy bone and grown in MEM-Ham F12 1:1 medium supplemented with 2% Ultroser (USM). They were subcultured and examined for osteoblast features by morphological, histological, and biochemical approaches. The cells had a characteristic polyhedral morphology and produced a high level of alkaline phosphatase (ALKP). Confluent cultures were uniformly stained for ALKP and flow cytometry analysis with fluorescein diphosphate gave a single peak signal, reflecting a highly positive population, distinct from cultures of fibroblasts. The ALKP activity was stimulated by 1,25 (OH)2 vitamin D3. CD 44 was strongly expressed in these cultures, although osteoblasts are negative in vivo and osteocytes are positive. The main collagen synthesized was type I collagen and osteocalcin was produced after stimulation by vitamin D3. 10 mM βGP induced mineralization and microprobe analysis of the crystals showed a composition close to hydroxyapatite.

Changing the culture conditions to MEM-10% calf serum acted on cell behavior: it reduced the production of these biochemical markers of osteoblasts and the morphology became fibroblastlike with more rapid cell multiplication. The parameter most affected by the change in culture medium was ALKP, which was selected as the determinant criterion for defining an osteoblast culture. ALKP activity was then used to characterize a culture of cells seeded in a collagen gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, T. D.; Schor, S. L. The contraction of collagen matrices by dermal fibroblasts. J. Ultrastruct. Res. 83:205–219; 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Auf’mkolk, B. M.; Hauschka, P. V.; Schwartz, E. R. Characterization of human bone cells in culture. Calcif. Tissue Int. 37:228–235; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Bancroft, J. D.; Stevens, A. Theory and practice of histological techniques. 2nd ed. Edinburg, Scotland: Churchill Livingstone; 1982.

    Google Scholar 

  4. Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76:1274–1278; 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Bellows, C. G.; Aubin, J. E.; Heersche, J. N. M., et al. Mineralized bone modules formed in vitro from enzymatically released rat calvaria cell population. Calcif. Tissue Int. 38:143–147; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Beresford, J. N.; Gallagher, J. A.; Russel, R. G. G. 1.25 dihydroxyvitamin D3 and human bone derived cells in vitro: effects of alkaline phosphatase, type I collagen and proliferation. Endocrinology 119:1776–1785; 1986.

    PubMed  CAS  Google Scholar 

  7. Bonis, M. P.; Germain, N.; Frey, J. A direct fluorimetric DNA assay on cell suspensions. J. Tissue Cult. Meth. 13:285–288; 1991.

    Article  Google Scholar 

  8. Chamson, A.; Rattner, A.; Raby, N., et al. Characterization of human osteoblast-like cells cultivated in vitro. In: Development and diseases of cartilage and bone matrix. N.Y.: Alan R. Liss. 1987:257–263.

    Google Scholar 

  9. Clover, J.; Gowen, M. Are MG-63 and HOS TE 85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 15:585–591; 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Flanagan, B. F.; Dalchau, R.; Allen, A. K., et al. Chemical composition and tissue distribution of the human CDW44 glycoprotein. Immunology 67:167–175; 1989.

    PubMed  CAS  Google Scholar 

  11. Franceschi, R. T.; James, W. M.; Zerlauth, G. 1a, 25- dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line. J. Cell. Physiol. 123:401–409; 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Frey, J.; Chamson, A.; Raby, N. Separation of amino-acids using ion-paired reversed phase high performance liquid chromatography with special reference to collagen hydrolysate. Amino Acids 4:45–51; 1993.

    Article  CAS  Google Scholar 

  13. Gerstenfeld, L. C.; Chipman, S. D.; Kelley, C. M., et al. Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts. J. Cell Biol. 106:979–989; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Heldin, C. H.; Johnsson, A.; Wennergren, S., et al. A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature 319:511–514; 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Hughes, D. E.; Salter, D. M.; Simpson, R. CD44 expression in human bone: a novel marker of osteocytic differentiation. J. Bone Miner. Res. 9:39–44; 1994.

    PubMed  CAS  Google Scholar 

  16. Kirstein, M.; Baglioni, C. Tumor necrosis factor stimulates proliferation of human osteosarcoma cells and accumulation of c- myc messenger RNA. J. Cell. Physiol. 134:479–484; 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Koutsilieris, M.; Sourla, A.; Pelletier, G., et al. Three-dimensional type I collagen gel system for the study of osteoblastic metastases produced by metastatic prostate cancer. J. Bone Miner. Res. 9:1823–1832; 1994.

    PubMed  CAS  Google Scholar 

  18. Labarca, C.; Paigen, K. A simple rapid and sensitive DNA assay procedure. Anal. Biochem. 102:344–352; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  20. Lian, J. B.; Coutts, M. C.; Cannalis, E. Studies of hormonal regulation of osteocalcin synthesis in cultured fetal rat calvaria. J. Biol. Chem. 260:8706–8710; 1985.

    PubMed  CAS  Google Scholar 

  21. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  22. Manolagas, S. C.; Burton, D. W.; Deftos, L. J. 1,25 dihydroxyvit. D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J. Biol. Chem. 256:7115–7117; 1981.

    PubMed  CAS  Google Scholar 

  23. Owen, T. A.; Aranow, M. S.; Barone, L. M., et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology 128:1496–1504; 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Partridge, N. C.; Alcorn, D.; Michelangeli, V. P., et al. Functional properties of hormonally responsive cultured normal and malignant rat osteoblastic cells. Endocrinology 108:213–219; 1981.

    PubMed  CAS  Google Scholar 

  25. Rattner, A.; Frey, J. Supermolecular complexes formed in lattices prepared with fibroblasts embedded in type I collagen. Biomed. Res. 13:95–105; 1992.

    CAS  Google Scholar 

  26. Rieck, P.; Peters, D.; Hartmann, C., et al. A new, rapid colorimetric assay for quantitative determination of cellular proliferation, growth inhibition and viability. J. Tissue Cult. Meth. 15:37–42; 1993.

    Article  Google Scholar 

  27. Robey, R. G.; Termine, J. D. Human bone cells in vitro. Calcif. Tissue Int. 37:453–460; 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Rodan, S. B.; Imai, Y.; Thiede, M. A., et al. Characterization of a human cell line (Saos-2) with osteoblastic properties. Cancer Res. 47:4961–4996; 1987.

    PubMed  CAS  Google Scholar 

  29. Sudo, M.; Kodama, H.; Amagai, Y., et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96:191–198; 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Talley-Ronsholdt, D. J.; Lajiness, E.; Nagodawithana, K. Transforming growth factor-beta inhibition of mineralization by neonatal rat osteoblasts in monolayer and collagen gel culture. In Vitro Cell. Dev. Biol. 31:274–282; 1995.

    Article  CAS  Google Scholar 

  31. Whitson, S. W.; Whitson, M. A.; Bowers, D. E., et al. Factors influencing synthesis and mineralization of bone matrix from fetal bovine bone cells grown in vitro. J. Bone Miner. Res. 7:727–741; 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Zilversmit, D. B.; Davis, K. J. Boehringer Mannheim colorimetric method. J. Lab. Clin. Meth. 35:155; 1950.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattner, A., Sabido, O., Massoubre, C. et al. Characterization of human osteoblastic cells: Influence of the culture conditions. In Vitro Cell.Dev.Biol.-Animal 33, 757–762 (1997). https://doi.org/10.1007/s11626-997-0154-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0154-7

Key words

Navigation