Skip to main content
Log in

Mineralized bone nodules formedin vitro from enzymatically released rat calvaria cell populations

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Single-cell suspensions obtained from sequential enzymatic digestions of fetal rat calvaria were grown in long-term culture in the presence of ascorbic acid, Na β-glycerophosphate, and dexamethasone to determine the capacity of these populations to form mineralized bone. In cultures of osteoblastlike cells grown in the presence of ascorbic acid and β-glycerophosphate or ascorbic acid alone, three-dimensional nodules (∼75 μm thick) covered by polygonal cells resembling osteoblasts could be detected 3 days after confluency. The nodules became macroscopic (up to 3 mm in diameter) after a further 3–4 days. Only in the presence of organic phosphate did they mineralize. Nodules did not develop without ascorbic acid in the medium. Dexamethasone caused a significant increase in the number of nodules. Histologically, nodules resembled woven bone and the cells covering the nodules stained strongly for alkaline phosphatase. Immunolabeling with specific antibodies demonstrated intense staining for type I collagen that was mineral-associated, a weaker staining for type III collagen and osteonectin, and undetectable staining for type II collagen. Nodules did not develop from population I and the number of nodules formed by populations II–V bore a linear relationship to the number of cells plated (r=.99). The results indicated that enzymatically released calvaria cells can form mineralized bone nodulesin vitro in the presence of ascorbic acid and organic phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peck WA, Birge SJ and Fedak SA (1964) Bone cells: biochemical and biological studies after enzymatic isolation. Science (Washington DC) 146:1476–1477

    Article  CAS  Google Scholar 

  2. Peck WA, Carpenter J, Messinger K, DeBra D (1973) Cyclic 3′5′ adenosine monophosphate in isolated bone cells: response to low concentrations of parathyroid hormone. Endocrinology 92:692–697

    PubMed  CAS  Google Scholar 

  3. Smith DM, Johnston CC, Severson AA (1973) Studies of the metabolism of separated bone cells. Calcif Tissue Res 11:56–59

    Article  PubMed  CAS  Google Scholar 

  4. Wong GL, Cohn DV (1974) Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature (Lond) 252:713–715

    Article  CAS  Google Scholar 

  5. Wong GL, Cohn DV (1975) Target cells in bone for parathormone and calcitonin are different: enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci USA 72:3167–3171

    Article  PubMed  CAS  Google Scholar 

  6. Luben RA, Wong GL, Cohn DV (1976) Biochemical characterization with parathormone and calcitonin of isolated bone cells: provisional identification of osteoblasts and osteoblasts. Endocrinology 99:526–534

    PubMed  CAS  Google Scholar 

  7. Rao LG, Ng B, Brunette DM, Heersche JNM (1977) Parathyroid hormone and prostaglandin E1-response in a selected population of bone cells after repeated subculture and storage at −80°C. Endocrinology 100:1233–1241

    PubMed  CAS  Google Scholar 

  8. Puzas JE, Vignery A, Rasmussen H (1979) Isolation of specific bone cell types free-flow electrophoresis. Calcif Tissue Int 27:263–268

    Article  PubMed  CAS  Google Scholar 

  9. Aubin JE, Heersche JNM, Merrilees MJ, Sodek J (1982) Isolation of bone cell clones with differences in growth, hormone responses and extracellular matrix production. J. Cell Biol 92:452–461

    Article  PubMed  CAS  Google Scholar 

  10. Wong GL (1982) Characterization of subpopulations of OC and OB bone cells obtained by sedimentation at unit gravity. Calif Tissue Int 34:67–75

    Article  CAS  Google Scholar 

  11. Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid carboxyglytamate in mineral tissue. Proc Natl Acad Sci USA 72:3925–3929

    Article  PubMed  CAS  Google Scholar 

  12. Price PA, Otsuka AS, Poser JW, Krislaponis J, Raman N (1976) Characterization of a γ-carboxyglutamic acid-containing protein from bone. Proc Nat, Acad Sci USA 73:1447–1451

    Article  CAS  Google Scholar 

  13. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  PubMed  CAS  Google Scholar 

  14. Rodan GA, Rodan SB (1984) Expression of the osteoblastic phenotype. In: Peck WA (ed) Bone and mineral research annual 2. Elsevier, Amsterdam, pp 244–285

    Google Scholar 

  15. Heersche JNM, Aubin JE, Gregoriadis AE, Moriya Y (1985) Hormone responsiveness of bone cell, populations: searching for answersin vivo andin vitro. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco, Birmingham pp 286–295

    Google Scholar 

  16. Majeska RJ, Rodan SB, Rodan GA (1985) Culture and activity of osteoblasts and osteoblast-like cells. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco, Birmingham, pp 279–285

    Google Scholar 

  17. Nijweide PJ, van Iperen-van Gent AS, Kawilarang-de Haas EWM, van der Plas A, Wassenaar AM (1982) Bone formation and calcification by isolated osteoblastic-like cells. J Cell Biol 93:318–323

    Article  PubMed  CAS  Google Scholar 

  18. Groot CG, Moskalewski S, Scherft JP, Boonekamp PM (1983) Electron microscopy of bone formed by syngeneic transplanted calvarial osteoblasts. Cell Biol Int Rep 7:577

    Article  PubMed  CAS  Google Scholar 

  19. Moskalewski S, Boonekamp PM, Scherft JP (1983) Bone formation by isolated calvarial osteoblasts in syngeneic and allogenic transplants: light microscopic observations. Am J Anat 167:249–263

    Article  PubMed  CAS  Google Scholar 

  20. Simmons DJ, Kent GN, Jilka RL, Scott DM, Fallon M, Cohn DV (1982) Formation of bone by isolated, cultured osteoblasts in millipore diffusion chambers. Calcif Tissue Int 34:291–294

    Article  PubMed  CAS  Google Scholar 

  21. Bab I, Ashton BA, Syftestad GD, Owen ME (1984) Assessment of an in vivo diffusion chamber method as a quantitative assay for osteogenesis. Calcif Tissue Int 36:77–82

    Article  PubMed  CAS  Google Scholar 

  22. Ashton BA, Eaglesom CC, Bab I, Owen ME (1984) Distribution of fibroblastic colony-forming cells in rabbit bone marrow and assay of their osteogenic potential by an in vivo diffusion chamber method. Calcif Tissue Int 36:83–86

    Article  PubMed  CAS  Google Scholar 

  23. Binderman I, Duksin D, Harrell A, Ketzir E, Sachs L (1974) Formation of bone tissue in culture from islated bone cells. J Cell Biol 61:427–439

    Article  PubMed  CAS  Google Scholar 

  24. Williams DC, Boder GB, Toomey RE, Paul DC, Hillman CL Jr, King KL, van Frank RM, Johnston CC Jr (1980) Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int 30:233–246

    Article  PubMed  CAS  Google Scholar 

  25. Anderson RE, Kemp JW, Jee WSS, Woodbury DM (1984) Ion-transporting ATPase and matrix mineralization in cultured osteoblasts-like cells. In Vitro 20:837–846

    PubMed  CAS  Google Scholar 

  26. Tenenbaum HC (1981) Role of organic phosphate in mineralization of bone in vitro. J Dent Res 60:1586–1589

    PubMed  CAS  Google Scholar 

  27. Tenenbaum HC, Heersche JNM (1982) Differentiation of osteoblasts and formation of mineralized bone in vitro. Calcif Tissue Int 34:76–79

    Article  PubMed  CAS  Google Scholar 

  28. Ecarot-Charrier B, Glorieux FH, van der Rest M, Pereira G (1983) Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol 96:639–643

    Article  PubMed  CAS  Google Scholar 

  29. Whitson SW, Harrison W, Dunlop MK, Bowers DE Jr, Fisher LW, Gehron Robey P, Termine JD (1984) Fetal bovine bone cells synthesize bone-specific matrix proteins. J Cell Biol 99:607–614

    Article  PubMed  CAS  Google Scholar 

  30. Sodek J, Heersche JNM (1981) Uptake of collagenolytic enzymes by bone cells during isolation from embryonic rat calvaria. Calcif Tissue Int 33:255–260

    Article  PubMed  CAS  Google Scholar 

  31. Drury RAB, Wallington EA (1967) Carleton's histological technique. 4th ed, Oxford University Press, London

    Google Scholar 

  32. Chen W-T, Singer SJ (1982) Immunoelectron microscopic studies on the sites of cell-substratum and cell-cell contacts in cultured fibroblasts. J Cell Biol 95:205–222

    Article  PubMed  CAS  Google Scholar 

  33. Baron R, Vignery A, Neff L, Silverglate A, Santa Maria A (1983) Processing of undecalcified bone specimens for bone histomorphometry. In: Recker RR (ed) Bone histomorphometry, techniques and interpretation. CRC Press, Boca Raton, FL, pp 13–35

    Google Scholar 

  34. McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative: a new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    PubMed  CAS  Google Scholar 

  35. Rao LV, Kalliecharan R, Wang H-M, Heersche JNM, Sodek J (1979) Specific immunohistochemical localization of type I collagen in procine periodontal tissues using the peroxidase-labelled antibody technique. Histochem J 11:73–82

    Article  PubMed  CAS  Google Scholar 

  36. Wang H-M, Nanda V, Rao LV, Melcher AH, Heersche JNM, Sodek J (1980) Specific immunohistochemical localization of type III collagen in porcine periodontal tissues using the peroxidase-antiperoxidase method. J Histochem Cytochem 28:1215–1223

    PubMed  CAS  Google Scholar 

  37. Otsuka K, Yao K-L, Wasi S, Tung PS, Aubin JE, Sodek J, Termine JD (1984) Biosynthesis of osteonectin by fetal porcine calvarial cells in vitro. J Biol Chem 259:9805–9812

    PubMed  CAS  Google Scholar 

  38. Johnson GD, Davidson RS, McNamee RC, Russel G, Goodwin D, Holborrow EJ (1982) Fading of immunofluorescence during microscopy: a study of the problem and its remedy. J Immunol Methods 55:231–242

    Article  PubMed  CAS  Google Scholar 

  39. Tenebaum HC, Heersche JNM (1985) Dexamethasone stimulates osteogenesis in vitro. Endocrinology 117:2211–2217

    Google Scholar 

  40. Jones SJ, Boyde A, Pawley JB (1975) Osteoblasts and collagen orientation. Cell Tissue Res 159:73–80

    Article  PubMed  CAS  Google Scholar 

  41. Yee JA (1983) Properties of osteoblast-like cells isolated from the cortical endosteal bone surface of adult rabbits. Calcif Tissue Int 35:571–577

    Article  PubMed  CAS  Google Scholar 

  42. Ries WL, Gong JK, Shalley MM (1985) A comparative study of osteoblasts: in situ versus isolated specimens. Am J Anat 172:57–73

    Article  PubMed  CAS  Google Scholar 

  43. Barnes MJ (1975) Function of ascorbic acid in collagen metabolism. Ann NY Acad Sci 258:264–277

    Article  PubMed  CAS  Google Scholar 

  44. Miller EJ (1976) Biochemical characterization and biological significance of the genetically distinct collagens. Mol Cell Biochem 13:165–192

    Article  PubMed  CAS  Google Scholar 

  45. Scott DM, Kent GN, Cohn DV (1980) Collagen synthesis in cultured osteoblast-like cells. Arch Biochem Biophys 201:384–391

    Article  PubMed  CAS  Google Scholar 

  46. Wiestner M, Fischer S, Dessau W, Müller PK (1981) Collagen types synthesized by isolated calvarium cells. Exp Cell Res 133:115–125

    Article  PubMed  CAS  Google Scholar 

  47. Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  PubMed  CAS  Google Scholar 

  48. Osdoby P, Caplan AI (1976) The possible differentiation of osteogenic elements in vitro from chick limb mesodermal cells. 1. Morphological evidence. Dev Biol 52:283–299

    Article  PubMed  CAS  Google Scholar 

  49. Osdoby P, Caplan AI (1979) Osteogenesis in cultures of limb mesenchymal cells. Dev Biol 73:84–102

    Article  PubMed  CAS  Google Scholar 

  50. Osdoby P, Caplan AI (1980) A scaning electron microscopic investigation of in vitro osteogenesis. Calcif Tissue Int 30:43–50

    Article  PubMed  CAS  Google Scholar 

  51. Howlett CR, Owen M, Cave J, Williamson M, Bab I, Maybee S, Triffit JT (1984) In vitro mineralization and alkaline phosphatase activity in cultures of rabbit marrow stromal cells. Calcif Tissue Int 36:567 (abs)

    Google Scholar 

  52. Canalis E (1983) Effect of glucocorticoids on Type I collagen synthesis, alkaline phosphatase activity, and deoxyribonucleic acid content in cultured rat calvaria. Endocrinology 112:931–939

    PubMed  CAS  Google Scholar 

  53. Chyun YS, Kream BE, Raisz LG (1984) Cortisol decreases bone formation by inhibiting periosteal cell proliferation. Endocrinology 114:477–480

    PubMed  CAS  Google Scholar 

  54. Hahn TJ, Westbrook SL, Halstead LR (1984) Cortisol modulation of osteoblast metabolic activity in cultured neonatal rat bone. Endocrinology 114:1864–1870

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellows, C.G., Aubin, J.E., Heersche, J.N.M. et al. Mineralized bone nodules formedin vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 38, 143–154 (1986). https://doi.org/10.1007/BF02556874

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556874

Key words

Navigation