Skip to main content
Log in

3,5-Dimethoxy-4-benzoic acid (syringic acid) a natural phenolic acid reduces reactive oxygen species in differentiated 3T3-L1 adipocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Preadipocytes under nutrient excess mature to lipid-laden adipocytes that are hotspots for generation of reactive oxygen species (ROS) imbalance and oxidative stress. Syringic acid (SA), a natural phenolic acid, was evaluated for its in vitro antioxidant and ROS modulation during in matured 3T3-L1 adipocytes. Following 10 d, the SA-treated adipocytes were evaluated for the levels of glutathione (GSH) and antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT). The levels of peroxides in mature adipocytes were estimated using dichlorofluorescein (DCF) cleavage fluorescence. The level of NADPH oxidase 4 (NOX4) expression was also investigated following 10-d differentiation period. SA significantly improved the levels of GSH, SOD, and CAT in matured adipocytes. Reduction in ROS production levels was also witnessed by decrease in DCF cleavage. SA showed concentration-dependent inhibition of NOX4 by day 7 of adipogenesis when compared with differentiated and undifferentiated cells. Moreover, SA exhibited effective antioxidant and anti-radical scavenging activity. These results suggest that SA in addition to inhibiting adipogenesis can strongly reduce ROS stress in mature adipocytes by upregulating levels of intracellular antioxidants and decreasing levels of NOX4 in 3T3-L1 adipocytes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Abbreviations

ABTS:

2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)

AT:

adipose tissue

BDE:

bond dissociation enthalpy

CAT:

catalase

Cu/Zn-SOD:

copper-zinc SOD

DC:

differentiated control

DCHF-DA:

2′,7′-dichlorofluorescin diacetate

DCF:

2′,7′-dichlorofluorescein

DPPH:

2,2-diphenyl-1-picrylhydrazyl

EC-SOD:

extracellular SOD

GSH:

glutathione

GLUT4:

glucose transporter type 4

IL:

interleukin

OS:

oxidative stress

ROS:

reactive oxygen species

SA:

syringic acid

SOD:

superoxide dismutase

Mn-SOD:

manganese SOD

MCE:

mitotic clonal expansion

NO:

nitric oxide

NOX4:

nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase

NADH:

nicotinamide adenine dinucleotide

TG:

triglyceride

UC:

undifferentiated control

References

  • Adachi T, Toishi T, Wu H, Kamiya T, Hara H (2009) Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Rep 14(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Ajitha MJ, Mohanlal S, Suresh CH, Jayalekshmy A (2012) DPPH radical scavenging activity of tricin and its conjugates isolated from “njavara” rice bran: a density functional theory study. J Agric Food Chem 60:3693–3699

    Article  CAS  PubMed  Google Scholar 

  • Al-farsi M, Alasalvar C, Morris A, Baron M, Shahidi F (2005) Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53:7592–7599

    Article  CAS  PubMed  Google Scholar 

  • Araki S, Dobashi K, Kubo K, Yamamoto Y, Asayama K, Shirahata A (2006) N-acetylcysteine attenuates TNF-α induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes. Life Sci 79:2405–2412

    Article  CAS  PubMed  Google Scholar 

  • Calzadilla P, Sapochnik D, Cosentino S, Diz V, Dicelio L, Calvo JC (2011) N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes. Int J Mol Sci 12:6936–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro JP, Grune T, Speckmann B (2016) The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol Chem 397:709–724

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Chuang L (2010) The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. Am J Transl Res 2:316–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Dai F, Zhou B, Yang L, Liu Z (2007) Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: mechanism and structure–activity relationship. Food Chem 104:132–139

    Article  CAS  Google Scholar 

  • Choi JW, Lee CW, Lee J, Choi DJ, Sohng JK, Il Park Y (2016) 7,8-Dihydroxyflavone inhibits adipocyte differentiation via antioxidant activity and induces apoptosis in 3T3-L1 preadipocyte cells. Life Sci 144:103–112

    Article  CAS  PubMed  Google Scholar 

  • Den Hartigh LJ, Omer M, Goodspeed L, Wang S, Wietecha T, O’Brien KD (2017) Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler Thromb Vasc Biol 37:466–475

    Article  Google Scholar 

  • Denisova TG, Denisov ET (2008) Dissociation energies of O—H bonds in natural antioxidants. Russ Chem Bull Int Ed 57:1858–1866

    Article  CAS  Google Scholar 

  • Duthie G, Crozier A (2000) Plant-derived phenolic antioxidants. Curr Opin Clin Nutr Metab Care 3:447–451

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1–8

    Article  CAS  PubMed  Google Scholar 

  • Farhan H, Rammal H, Hijazi A, Hamad H, Daher A, Reda M (2012) In vitro antioxidant activity of ethanolic and aqueous extracts from crude Malva parviflora L. Grown In Lebanon. Asian J Pharm Clin Res 5:234–238

    CAS  Google Scholar 

  • Fonseca-alaniz MH, Takada J, Alonso-vale MIC, Lima FB. (2007) Adipose tissue as an endocrine organ: from theory to practice 83:192–203

  • Freitas CS, Alves da Silva G, Perrone D, A Vericimo M, Dos S Baião D, R Pereira P (2018) Recovery of antimicrobials and bioaccessible isoflavones and phenolics from soybean (Glycine max) meal by aqueous extraction. Molecules 24(1):74

    Article  Google Scholar 

  • Furukawa S, Fujita T, Shumabukuro M, Iwaki M, Yamada Y, Makajima Y (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes A, Fernandes E, Lima LFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  CAS  PubMed  Google Scholar 

  • Han CY, Umemoto T, Omer M, Den Hartigh LJ, Chiba T, Leboeuf R (2012) NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem 287:10379–10393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota A, Taki S, Kawaii S, Yano M, Abe N (2000) 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines. Biosci Biotechnol Biochem 64:1038–1040

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Choi H, Kim G (2019) Inhibitory effects of Orostachys malacophyllus var. iwarenge extracts on reactive oxygen species production and lipid accumulation during 3T3-L1 adipocyte differentiation. Food Sci Biotechnol 28(1):227–236

    Article  CAS  PubMed  Google Scholar 

  • John C, Arockiasamy S (2019) Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) inhibits adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. Nat Prod Res 23:3432–3436

    Google Scholar 

  • Kakkar P, Das BBH, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  • Kampa M, Vassilia-Ismini A, George N, Artemissia-Phoebe N, Anastassia N, Anastassia H (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 6:R63–R74

    Article  CAS  PubMed  Google Scholar 

  • Karthik G, Angappan M, Vijaya Kumar A, Natarajapillai S (2014) Syringic acid exerts antiangiogenic activity by downregulation of VEGF in zebrafish embryos. Biomed Prev Nutr 4:203–208

    Article  Google Scholar 

  • Kefalas P, Kallithraka S, Parejo I, Makris DP (2003) Note: a comparative study on the in vitro antiradical activity and hydroxyl free radical scavenging activity in aged red wines. Food Sci Technol Int 9:383

    Article  CAS  Google Scholar 

  • Kim M-H, Park J-S, Seo M-S, Jung J-W, Lee Y-S, Kang K-S (2010) Genistein and daidzein repress adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via Wnt-β-catenin signalling or lipolysis. Cell Prolif 43:594–605

  • Kim Y, Lee J (2017) ‘Esculetin inhibits adipogenesis and increases antioxidant activity during adipocyte differentiation in 3T3-L1 cells. Prev Nutr Food Sci 22(2):118–123

  • Koroleva O, Torkova A, Nikolaev I, Khrameeva E, Fedorova T, Tsentalovich M (2014) Evaluation of the antiradical properties of phenolic acids. Int J Mol Sci 15:16351–16380

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Lee YJ, Choi H, Ko EH, Kim JW (2009) Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284:10601–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-J, Yu S-Y, Lee JS, Kim M-D, Lee D-W, Kim K-J (2014) Anti-adipogenic and anti-oxidant activities of mugwort and pine needles fermented using Leuconostoc mesenteroides 1076. Food Biotechnol 28:79–95

    Article  CAS  Google Scholar 

  • Liu G-S, Chan E, Higuchi M, Dusting G, Jiang F (2012) Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells 1:976–993

  • Liu Y, Fang J, Lei T, Wang W, Lin A (2003) Anti-endotoxic effects of syringic acid of radix isatidis. J Huazhong Univ Sci Technolog Med Sci 23:206–208

  • Mandal N, Mandal S, Hazra B, Sarkar R, Biswas S (2011) Assessment of the antioxidant and reactive oxygen species scavenging activity of methanolic extract of caesalpinia crista leaf. Evid Based Complement Alternat Med 2011:173768

    Article  PubMed  PubMed Central  Google Scholar 

  • Marklund SL (1984) Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Invest 74:1398–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marseglia L, Manti S, Angelo GD, Nicotera A, Parisi E, Di Rosa G (2015) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16:378–400

    Article  Google Scholar 

  • McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968-1988). Free Radic Biol Med 5(5–6):363–369

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263(33):17205–17208

    Article  CAS  PubMed  Google Scholar 

  • Morales JC, Lucas R (2010) Structure–activity relationship of phenolic antioxidants and olive components. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Academic Press, San Diego, pp 905–914

    Chapter  Google Scholar 

  • Mouche S, Ben S, Wang W, Katic M, Tseng Y, Carnesecchi S (2007) Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochim Biophys Acta 1773:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Picklo MJ, Long EK, Vomhof-dekrey EE (2015) Glutathionyl systems and metabolic dysfunction in obesity. Emerg Sci 73(12):858–868

    Google Scholar 

  • Razzaghi-Asl N, Garrido J, Khazraei H, Borges F, Firuzi O (2013) Antioxidant properties of hydroxycinnamic acids: a review of structure-activity relationships. Curr Med Chem 20:4436–4450

    Article  CAS  PubMed  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N (1998) Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 47:1562–1569

    Article  CAS  PubMed  Google Scholar 

  • Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med 12(1):221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder K, Wandzioch K, Helmcke I, Brandes RP (2009) Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29:239–245

    Article  PubMed  Google Scholar 

  • Sinha AK (1972) Calorimetric assay of catalase. Anal Biochem 394(47):389–394

    Article  Google Scholar 

  • Speakman JR, Selman C (2011) The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays. 33:255–259

    Article  PubMed  Google Scholar 

  • Tiganis T (2011) Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci 32(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Tirosh A, Potashnik R, Bashan N, Rudich A (1999) Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J Biol Chem 274:10595–10602

    Article  CAS  PubMed  Google Scholar 

  • Tunc O, Thompson J, Tremellen K (2010) Development of the NBT assay as a marker of sperm oxidative stress. Int J Androl 33(1):13–21

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam U, Muthukrishnan S (2012) Free radical scavenging activity of ethanolic extract of Desmodium gangeticum. J Acute Med 2(2):36–42

    Article  CAS  Google Scholar 

  • Vigilanza P, Aquilano K, Baldelli S, Rotilio G, Ciriolo MR (2011) Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J Cell Physiol 226:2016–2024

    Article  CAS  PubMed  Google Scholar 

  • Zambonin L, Caliceti C, Vieceli F, Sega D, Fiorentini D, Hrelia S (2012) Dietary phenolic acids act as effective antioxidants in membrane models and in cultured cells, exhibiting proapoptotic effects in leukaemia cells. Oxidative Med Cell Longev 2012:839298

Download references

Acknowledgements

This research was conducted in the Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116.

Funding

This research was partially supported by Shri NPV Ramasamy Udayar PhD Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumathy Arockiasamy.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, C.M., Arockiasamy, S. 3,5-Dimethoxy-4-benzoic acid (syringic acid) a natural phenolic acid reduces reactive oxygen species in differentiated 3T3-L1 adipocytes. In Vitro Cell.Dev.Biol.-Animal 57, 386–394 (2021). https://doi.org/10.1007/s11626-021-00549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-021-00549-7

Keywords

Navigation