Skip to main content

Advertisement

Log in

In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Testing of all manufactured products and their ingredients for eye irritation is a regulatory requirement. In the last two decades, the development of alternatives to the in vivo Draize eye irritation test method has substantially advanced due to the improvements in primary cell isolation, cell culture techniques, and media, which have led to improved in vitro corneal tissue models and test methods. Most in vitro models for ocular toxicology attempt to reproduce the corneal epithelial tissue which consists of 4–5 layers of non-keratinized corneal epithelial cells that form tight junctions, thereby limiting the penetration of chemicals, xenobiotics, and pharmaceuticals. Also, significant efforts have been directed toward the development of more complex three-dimensional (3D) equivalents to study wound healing, drug permeation, and bioavailability. This review focuses on in vitro reconstructed 3D corneal tissue models and their utilization in ocular toxicology as well as their application to pharmacology and ophthalmic research. Current human 3D corneal epithelial cell culture models have replaced in vivo animal eye irritation tests for many applications, and substantial validation efforts are in progress to verify and approve alternative eye irritation tests for widespread use. The validation of drug absorption models and further development of models and test methods for many ophthalmic and ocular disease applications is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Abdalkader R, Kamei KI (2020) Multi-corneal barrier-on-a-chip to recapitulate eye blinking shear stress forces. Lab Chip 20:1410–1417

    Article  CAS  PubMed  Google Scholar 

  • Abdelkader H, Pierscionek B, Carew M, Wu Z, Alany RG (2015) Critical appraisal of alternative irritation models: three decades of testing ophthalmic pharmaceuticals. Br Med Bull 113:59–71

    Article  PubMed  Google Scholar 

  • Aberdam E, Petit I, Sangari L, Aberdam D (2017) Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS One 12:e0179913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abo T, Hilberer A, Behle-Wagner C, Watanabe M, Cameron D, Kirst A, Nukada Y, Yuki T, Araki D, Sakaguchi H, Itagaki H (2018) Predictive performance and inter-laboratory reproducibility in assessing eye irritation potential of water- and oil-soluble mixtures using the Short Time Exposure test method. Toxicol in Vitro 48:78–85

    Article  CAS  PubMed  Google Scholar 

  • Adriaens E, Barroso J, Eskes C, Hoffmann S, McNamee P, Alepee N, Bessou-Touya S, De Smedt A, De Wever B, Pfannenbecker U, Tailhardat M, Zuang V (2014) Retrospective analysis of the Draize test for serious eye damage/eye irritation: importance of understanding the in vivo endpoints under UN GHS/EU CLP for the development and evaluation of in vitro test methods. Arch Toxicol 88:701–723

    Article  CAS  PubMed  Google Scholar 

  • Adriaens E, Dierckens K, Bauters TG, Nelis HJ, van Goethem F, Vanparys P, Remon JP (2001) The mucosal toxicity of different benzalkonium chloride analogues evaluated with an alternative test using slugs. Pharm Res 18:937–942

    Article  CAS  PubMed  Google Scholar 

  • Adriaens E, Guest R, Willoughby JA Sr, Fochtman P, Kandarova H, Verstraelen S, Van Rompay AR (2018a) CON4EI: Slug mucosal irritation (SMI) test method for hazard identification and labelling of serious eye damaging and eye irritating chemicals. Toxicol in Vitro 49:77–89

    Article  CAS  PubMed  Google Scholar 

  • Adriaens E, Verstraelen S, Alepee N, Kandarova H, Drzewiecka A, Gruszka K, Guest R, Willoughby JA Sr, Van Rompay AR (2018b) CON4EI: Development of testing strategies for hazard identification and labelling for serious eye damage and eye irritation of chemicals. Toxicol in Vitro 49:99–115

    Article  CAS  PubMed  Google Scholar 

  • Adriaens E, Willoughby JA Sr, Meyer BR, Blakeman LC, Alepee N, Fochtman P, Guest R, Kandarova H, Verstraelen S, Van Rompay AR (2018c) CON4EI: Short time exposure (STE) test method for hazard identification and labelling of eye irritating chemicals. Toxicol in Vitro 49:65–76

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Rupenthal ID (2016) In vitro and ex vivo corneal penetration and absorption models. Drug Deliv Transl Res 6:634–647

    Article  CAS  PubMed  Google Scholar 

  • Alépée N, Adriaens E, Abo T, Bagley D, Desprez B, Hibatallah J, Mewes K, Pfannenbecker U, Sala À, Van Rompay AR, Verstraelen S, McNamee P (2019) Development of a defined approach for eye irritation or serious eye damage for neat liquids based on cosmetics Europe analysis of in vitro RhCE and BCOP test methods. Toxicol in Vitro 59:100–114

    Article  PubMed  CAS  Google Scholar 

  • Alepee N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lubberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schafer-Korting M, Zeilinger K, Zurich MG (2014) State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. Altex 31:441–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Alepee N, Bessou-Touya S, Cotovio J, de Smedt A, de Wever B, Faller C, Jones P, Le Varlet B, Marrec-Fairley M, Pfannenbecker U, Tailhardat M, van Goethem F, McNamee P (2013) Cosmetics Europe multi-laboratory pre-validation of the SkinEthic reconstituted human corneal epithelium test method for the prediction of eye irritation. Toxicol in Vitro 27:1476–1488

    Article  CAS  PubMed  Google Scholar 

  • Alepee N, Hibatallah J, Klaric M, Mewes KR, Pfannenbecker U, McNamee P (2016a) Assessment of cosmetic ingredients in the in vitro reconstructed human epidermis test method EpiSkin using HPLC/UPLC-spectrophotometry in the MTT-reduction assay. Toxicol in Vitro 33:105–117

    Article  CAS  PubMed  Google Scholar 

  • Alepee N, Leblanc V, Adriaens E, Grandidier MH, Lelievre D, Meloni M, Nardelli L, Roper CS, Santirocco E, Toner F, Van Rompay A, Vinall J, Cotovio J (2016b) Multi-laboratory validation of SkinEthic HCE test method for testing serious eye damage/eye irritation using liquid chemicals. Toxicol in Vitro 31:43–53

    Article  CAS  PubMed  Google Scholar 

  • Alépée N, Leblanc V, Grandidier MH, Teluob S, Tagliati V, Adriaens E, Michaut V (2020) Development of the SkinEthic HCE Time-to-Toxicity test method for identifying liquid chemicals not requiring classification and labelling and liquids inducing serious eye damage and eye irritation. Toxicol in Vitro 69:104960

    Article  PubMed  CAS  Google Scholar 

  • Amano S, Mimura T, Yamagami S, Osakabe Y, Miyata K (2005) Properties of corneas reconstructed with cultured human corneal endothelial cells and human corneal stroma. Jpn J Ophthalmol 49:448–452

    Article  PubMed  Google Scholar 

  • Amano S, Yamagami S, Mimura T, Uchida S, Yokoo S (2006) Corneal stromal and endothelial cell precursors. Cornea 25:S73–S77

    Article  PubMed  Google Scholar 

  • Andrade WM, da Silva ACG, Moreira LC, Gomes T, Batista AC, Valadares MC (2020) Innovative strategy based on mechanisms to substitute animal testing for ocular toxicity assessment of agrochemical formulations market in Brazil. Toxicol in Vitro 66:104851

    Article  CAS  PubMed  Google Scholar 

  • Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36:614–621

    CAS  PubMed  Google Scholar 

  • Argueso P, Gipson IK (2001) Epithelial mucins of the ocular surface: structure, biosynthesis and function. Exp Eye Res 73:281–289

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Fu H, Bazinet L, Birsner AE, D'Amato RJ (2020) A method for developing novel 3D cornea-on-a-chip using primary murine corneal epithelial and endothelial cells. Front Pharmacol 11:453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balls M, Berg N, Bruner LH, Curren RD, de Silva O, Earl LK, Esdaile DJ, Fentem JH, Liebsch M, Ohno Y, Prinsen MK, Spielmann H, Worth AP (1999) Eye irritation testing: the way forward. The Report and Recommendations of ECVAM Workshop 34. Altern Lab Anim 27:53–77

    CAS  PubMed  Google Scholar 

  • Barile FA (2010) Validating and troubleshooting ocular in vitro toxicology tests. J Pharmacol Toxicol Methods 61:136–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso J, Ahn IY, Caldeira C, Carmichael PL, Casey W, Coecke S, Curren R, Desprez B, Eskes C, Griesinger C, Guo J, Hill E, Roi AJ, Kojima H, Li J, Lim CH, Moura W, Nishikawa A, Park H, Peng S, Presgrave O, Singer T, Sohn SJ, Westmoreland C, Whelan M, Yang X, Yang Y, Zuang V (2016) International harmonization and cooperation in the validation of alternative methods. Adv Exp Med Biol 856:343–386

    Article  CAS  PubMed  Google Scholar 

  • Barroso J, Pfannenbecker U, Adriaens E, Alépée N, Cluzel M, De Smedt A, Hibatallah J, Klaric M, Mewes KR, Millet M, Templier M, McNamee P (2017) Cosmetics Europe compilation of historical serious eye damage/eye irritation in vivo data analysed by drivers of classification to support the selection of chemicals for development and evaluation of alternative methods/strategies: the Draize eye test Reference Database (DRD). Arch Toxicol 91:521–547

    Article  CAS  PubMed  Google Scholar 

  • Barroso JF, Alepee N, Cole T, Freeman S, Liska R, McNamee P, Pfannenbecker U, Reus A, Rubingh C, Schaeffer MW, Zuang V, Eskes C, Griesinger C, T M (2014) The EURL ECVAM - Cosmetics Europe prospective validation study of Reconstructed human Cornea-like Epithelium (RhCE)-based test methods for identifying chemicals not requiring classification and labelling for serious eye damage/eye irritation. Publ Off Eur Union. https://doi.org/10.2787/41680

  • Becker U, Ehrhardt C, Schneider M, Muys L, Gross D, Eschmann K, Schaefer UF, Lehr CM (2008) A comparative evaluation of corneal epithelial cell cultures for assessing ocular permeability. Altern Lab Anim 36:33–44

    Article  CAS  PubMed  Google Scholar 

  • Bennet D, Estlack Z, Reid T, Kim J (2018) A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. Lab Chip 18:1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Blazka M, Harbell JW, Klausner M, Merrill JC, Kubilus J, Kloss C, Bagley DM (2003) Evaluating the ocular irritation potential of 54 test articles using the EpiOcular human tissue construct model (OCL-200). Toxicologist 72:221

    Google Scholar 

  • Blazka ME, Diaco M, Harbell JW, Raabe H, Sizemore A, Wilt N, Bagley DM (2005) EpiOcular™ human cell construct: tissue viability and histological changes following exposure to surfactants. Toxicologist 85:409

    Google Scholar 

  • Bradlaw J, Gupta K, Green S, Hill R, Wilcox N (1997) Practical application of non-whole animal alternatives: summary of IRAG workshop on eye irritation testing. Interagency Regulatory Alternatives Group. Food Chem Toxicol 35:175–178

    Article  CAS  PubMed  Google Scholar 

  • Brantom PG, Bruner LH, Chamberlain M, De Silva O, Dupuis J, Earl LK, Lovell DP, Pape WJ, Uttley M, Bagley DM, Baker FW, Bracher M, Courtellemont P, Declercq L, Freeman S, Steiling W, Walker AP, Carr GJ, Dami N, Thomas G, Harbell J, Jones PA, Pfannenbecker U, Southee JA, Tcheng M, Argembeaux H, Castelli D, Clothier R, Esdaile DJ, Itigaki H, Jung K, Kasai Y, Kojima H, Kristen U, Larnicol M, Lewis RW, Marenus K, Moreno O, Peterson A, Rasmussen ES, Robles C, Stern M (1997) A summary report of the COLIPA international validation study on alternatives to the draize rabbit eye irritation test. Toxicol in Vitro 11:141–179

    Article  CAS  PubMed  Google Scholar 

  • Bruner LH (1992) Alternatives to the use of animals in household product and cosmetic testing. J Am Vet Med Assoc 200:669–673

    CAS  PubMed  Google Scholar 

  • Bruner LH, Miller KR, Owicki JC, Parce JW, Muir VC (1991) Testing ocular irritancy in vitro with the silicon microphysiometer. Toxicol in Vitro 5:277–284

    Article  CAS  PubMed  Google Scholar 

  • Burton AB, York M, Lawrence RS (1981) The in vitro assessment of severe eye irritants. Food Cosmet Toxicol 19:471–480

    Article  CAS  PubMed  Google Scholar 

  • CA.GOV (2018) Senate Bill No. 1249. Animal testing: cosmetics. CHAPTER 899. An act to add Section 1834.9.5 to the Civil Code, relating to animal testing. https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1249.

  • CD_76/768/EEC (2004) Timetables for the phasing-out of animal testing in the framework of the 7th Amendment to the Cosmetics Directive (Council Directive 76/768/EEC), COMMISSION OF THE EUROPEAN COMMUNITIES, available at: https://ec.europa.eu/docsroom/documents/13124/attachments/1/translations.

  • Ceriotti L, Balzaretti S, Barone S, Meloni M (2020) Eye irritation potential of microglycine and microglycine-containing ointments: an in vitro study on reconstructed human corneal epithelium. Clin Ophthalmol 14:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón M, Vázquez N, Berisa S, Persinal M, Sánchez M, Baamonde B, Alfonso JF, Fernández-Vega Cueto L, Merayo-Lloves J, Meana Á (2019) QobuR - a new in vitro human corneal epithelial model for preclinical drug screening. Eur J Pharm Biopharm 136:164–173

    Article  PubMed  CAS  Google Scholar 

  • Chang JE, Basu SK, Lee VH (2000) Air-interface condition promotes the formation of tight corneal epithelial cell layers for drug transport studies. Pharm Res 17:670–676

    Article  CAS  PubMed  Google Scholar 

  • Chapman S, Liu X, Meyers C, Schlegel R, McBride AA (2010) Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J Clin Invest 120:2619–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Lee M, Lee SH, Jung HS, Kim SY, Chung TY, Choe TB, Chun YJ, Lim KM (2015) Identification of cornifelin and early growth response-1 gene as novel biomarkers for in vitro eye irritation using a 3D reconstructed human cornea model MCTT HCE™. Arch Toxicol 89:1589–1598

    Article  CAS  PubMed  Google Scholar 

  • Choksi NY, Truax J, Layton A, Matheson J, Mattie D, Varney T, Tao J, Yozzo K, McDougal AJ, Merrill J, Lowther D, Barroso J, Linke B, Casey W, Allen D (2019) United States regulatory requirements for skin and eye irritation testing. Cutan Ocul Toxicol 38:141–155

    Article  PubMed  Google Scholar 

  • Cotovio J, Grandidier MH, Lelievre D, Bremond C, Amsellem C, Maloug S, Ovigne JM, Loisel-Joubert S, Lee AV, Minondo AM, Capallere C, Bertino B, Alepee N, Tinois-Tessonneaud E, de Fraissinette AB, Meunier JR, Leclaire J (2010) In vitro assessment of eye irritancy using the Reconstructed Human Corneal Epithelial SkinEthic HCE model: application to 435 substances from consumer products industry. Toxicol in Vitro 24:523–537

    Article  CAS  PubMed  Google Scholar 

  • Cottin M, Zanvit A (1997) Fluorescein leakage test: a useful tool in ocular safety assessment. Toxicol in Vitro 11:399–405

    Article  CAS  PubMed  Google Scholar 

  • Creager HM, Kumar A, Zeng H, Maines TR, Tumpey TM, Belser JA (2018) Infection and replication of influenza virus at the ocular surface. J Virol 92

  • Curren RD, Harbell JW (2002) Ocular safety: a silent (in vitro) success story. Altern Lab Anim 30(Suppl 2):69–74

    Article  CAS  PubMed  Google Scholar 

  • da Silva ACG, Chialchia AR, de Castro EG, MRL ES, Arantes DAC, Batista AC, Kitten GT, Valadares MC (2020) A new corneal epithelial biomimetic 3D model for in vitro eye toxicity assessment: development, characterization and applicability. Toxicol in Vitro 62:104666

    Article  PubMed  CAS  Google Scholar 

  • Deardorff PM, McKay TB, Wang S, Ghezzi CE, Cairns DM, Abbott RD, Funderburgh JL, Kenyon KR, Kaplan DL (2018) Modeling diabetic corneal neuropathy in a 3D in vitro cornea system. Sci Rep 8:17294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desjardins P, Couture C, Germain L, Guérin SL (2019) Contribution of the WNK1 kinase to corneal wound healing using the tissue-engineered human cornea as an in vitro model. J Tissue Eng Regen Med 13:1595–1608

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Poland CA (2013) Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol 24:724–734

    Article  CAS  PubMed  Google Scholar 

  • Draize JH, Woodard G, Calvery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–390

    CAS  Google Scholar 

  • Du Y, Sundarraj N, Funderburgh ML, Harvey SA, Birk DE, Funderburgh JL (2007) Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci 48:5038–5045

    Article  PubMed  Google Scholar 

  • Dua HS, Faraj LA, Said DG, Gray T, Lowe J (2013) Human corneal anatomy redefined: a novel pre-Descemetʼs layer (Duaʼs layer). Ophthalmology 120:1778–1785

    Article  PubMed  Google Scholar 

  • Dumouchel JL, Chemuturi N, Milton MN, Camenisch G, Chastain J, Walles M, Sasseville V, Gunduz M, Iyer GR, Argikar UA (2018) Models and approaches describing the metabolism, transport, and toxicity of drugs administered by the ocular route. Drug Metab Dispos 46:1670–1683

    Article  CAS  PubMed  Google Scholar 

  • EC (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. Off J Eur Union 1–849

  • EC (2020) Ban on animal testing, internal market, industry, entrepreneurship and SMEs. Available at: https://ec.europa.eu/growth/sectors/cosmetics/animal-testing_en; last accessed July 12, 2020.

  • ECHA (2017) Guidance on the application of the CLP criteria guidance to regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures; Version 5.0, July 2017. European Chemicals Agency, https://doi.org/10.2823/124801

  • ECVAM (2014) The EURL ECVAM - Cosmetics Europe prospective validation study of Reconstructed human Cornea-like Epithelium (RhCE)-based test methods for identifying chemicals not requiring classification and labelling for serious eye damage/eye irritation: validation study report. EUR 28125 EN; doi:https://doi.org/10.2787/41680. Available at: [http://publications.jrc.ec.europa.eu/repository/handle/JRC100280].

  • Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, Popovic M, Vassena R, Veiga A (2019) Two decades of embryonic stem cells: a historical overview. Hum Reprod Open 2019:hoy024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100:59–74

    Article  CAS  PubMed  Google Scholar 

  • Engelke M, Zorn-Kruppa M, Gabel D, Reisinger K, Rusche B, Mewes KR (2013) A human hemi-cornea model for eye irritation testing: quality control of production, reliability and predictive capacity. Toxicol in Vitro 27:458–468

    Article  CAS  PubMed  Google Scholar 

  • EPA U (2015) Use of an alternate testing framework for classification of eye irritation potential of epa pesticide products. https://www.epa.gov/sites/production/files/2015-05/documents/eye_policy2015update.pdf. In Office of Pesticide Programs USEPA (ed). Washington DC

  • Erbani J, Aberdam D, Larghero J, Vanneaux V (2016) Pluripotent stem cells and other innovative strategies for the treatment of ocular surface diseases. Stem Cell Rev Rep 12:171–178

    Article  CAS  PubMed  Google Scholar 

  • ESAC (2009) Statement on the scientific validity of cytotoxicity/cell-function based in vitro assay for eye irritation testing , 31St meeting of ECVAM Scientific Advisory Committee (ESAC) , 7-8 July 2009. European Commission- Joint Research Centre. Institute for Health and Consumer Protection. European Centre for Validation of Alternative Methods (ECVAM). Avai lable from: under Publications/ESAC statements.

  • Eskes C, Bostrom AC, Bowe G, Coecke S, Hartung T, Hendriks G, Pamies D, Piton A, Rovida C (2017) Good cell culture practices &in vitro toxicology. Toxicol in Vitro 45:272–277

    Article  CAS  PubMed  Google Scholar 

  • Espana EM, Kawakita T, Liu CY, Tseng SC (2004) CD-34 expression by cultured human keratocytes is downregulated during myofibroblast differentiation induced by TGF-beta1. Invest Ophthalmol Vis Sci 45:2985–2991

    Article  PubMed  Google Scholar 

  • EU (2008) European Union, 2008. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006

  • Fallacara A, Vertuani S, Panozzo G, Pecorelli A, Valacchi G, Manfredini S (2017) Novel artificial tears containing cross-linked hyaluronic acid: an in vitro re-epithelialization study. Molecules 22:2104

    Article  PubMed Central  CAS  Google Scholar 

  • Feizi S (2018) Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol 10:2515841418815802

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Pérez J, Ahearne M (2019) Influence of biochemical cues in human corneal stromal cell phenotype. Curr Eye Res 44:135–146

    Article  PubMed  CAS  Google Scholar 

  • Forsby A, Norman KG, El Andaloussi-Lilja J, Lundqvist J, Walczak V, Curren R, Martin K, Tierney NK (2012) Using novel in vitro NociOcular assay based on TRPV1 channel activation for prediction of eye sting potential of baby shampoos. Toxicol Sci 129:325–331

    Article  CAS  PubMed  Google Scholar 

  • Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S (2017) Cornea organoids from human induced pluripotent stem cells. Sci Rep 7:41286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman S, Alépée N, Barroso J, Cole T, Compagnoni A, Rubingh C, Eskes C, Lammers J, McNamee P, Pfannenbecker U, Zuang V (2010) Prospective validation study of reconstructed human tissue models for eye irritation testing. Altex 27:255–260

    Google Scholar 

  • Fukuda K (2020) Corneal fibroblasts: function and markers. Exp Eye Res 200:108229

    Article  CAS  PubMed  Google Scholar 

  • Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278:45629–45637

    Article  CAS  PubMed  Google Scholar 

  • Gautheron P, Dukic M, Alix D, Sina JF (1992) Bovine corneal opacity and permeability test: an in vitro assay of ocular irritancy. Fundam Appl Toxicol 18:442–449

    Article  CAS  PubMed  Google Scholar 

  • Gettings SD, Lordo RA, Hintze KL, Bagley DM, Casterton PL, Chudkowski M, Curren RD, Demetrulias JL, Dipasquale LC, Earl LK, Feder PI, Galli CL, Glaza SM, Gordon VC, Janus J, Kurtz PJ, Marenus KD, Moral J, Pape WJ, Renskers KJ, Rheins LA, Roddy MT, Rozen MG, Tedeschi JP, Zyracki J (1996) The CTFA Evaluation of Alternatives Program: an evaluation of in vitro alternatives to the Draize primary eye irritation test. (Phase III) surfactant-based formulations. Food Chem Toxicol 34:79–117

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi CE, Rnjak-Kovacina J, Kaplan DL (2015) Corneal tissue engineering: recent advances and future perspectives. Tissue Eng Part B Rev 21:278–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilleron L, Coecke S, Sysmans M, Hansen E, van Oproy S, Marzin D, van Cauteren H, Vanparys P (1997) Evaluation of the HET-CAM-TSA method as an alternative to the draize eye irritation test. Toxicol in Vitro 11:641–644

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Daneshian M, Bouwstra J, Caloni F, Constant S, Davies DE, Dandekar G, Guzman CA, Fabian E, Haltner E, Hartung T, Hasiwa N, Hayden P, Kandarova H, Khare S, Krug HF, Kneuer C, Leist M, Lian G, Marx U, Metzger M, Ott K, Prieto P, Roberts MS, Roggen EL, Tralau T, van den Braak C, Walles H, Lehr CM (2015) Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. Altex 32:327–378

    Article  PubMed  Google Scholar 

  • Goswami DG, Tewari-Singh N, Agarwal R (2016) Corneal toxicity induced by vesicating agents and effective treatment options. Ann N Y Acad Sci 1374:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA (1999) Functional human corneal equivalents constructed from cell lines. Science 286:2169–2172

    Article  CAS  PubMed  Google Scholar 

  • Gruber FP, Hartung T (2004) Alternatives to animal experimentation in basic research. Altex 21(Suppl 1):3–31

    Article  PubMed  Google Scholar 

  • Guo X, Hutcheon AE, Melotti SA, Zieske JD, Trinkaus-Randall V, Ruberti JW (2007) Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Invest Ophthalmol Vis Sci 48:4050–4060

    Article  PubMed  Google Scholar 

  • Haderspeck JC, Chuchuy J, Kustermann S, Liebau S, Loskill P (2019) Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opin Drug Disc 14:47–57

    Article  CAS  Google Scholar 

  • Harbell JW, Koontz SW, Lewis RW, Lovell D, Acosta D (1997) IRAG working group 4. Cell cytotoxicity assays. Interagency Regulatory Alternatives Group. Food Chem Toxicol 35:79–126

    Article  CAS  PubMed  Google Scholar 

  • Hartung T (2009) Toxicology for the twenty-first century. Nature 460:208–212

    Article  CAS  PubMed  Google Scholar 

  • Hartung T (2010) Food for thought...on alternative methods for chemical safety testing. Altex 27:3–14

    Article  PubMed  Google Scholar 

  • Hartung T, De Vries R, Hoffmann S, Hogberg HT, Smirnova L, Tsaioun K, Whaley P, Leist M (2019) Toward good in vitro reporting standards. Altex 36:3–17

    Article  PubMed  Google Scholar 

  • Hartung T, Gstraunthaler G, Coecke S, Lewis D, Blanck O, Balls M (2001) Good cell culture practice (GCCP)--an initiative for standardization and quality control of in vitro studies. The establishment of an ECVAM Task Force on GCCP. Altex 18:75–78

    CAS  PubMed  Google Scholar 

  • Hatou S, Yoshida S, Higa K, Miyashita H, Inagaki E, Okano H, Tsubota K, Shimmura S (2013) Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/β-catenin signaling. Stem Cells Dev 22:828–839

    Article  CAS  PubMed  Google Scholar 

  • Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60:207–225

    Article  CAS  PubMed  Google Scholar 

  • Hutak CM, Kavanagh ME, Reddy IK (2002) Comparative development of SIRC rabbit corneal cells grown on polycarbonate- and polyester-based filters. Skin Pharmacol Appl Ski Physiol 15:133–138

    Article  CAS  Google Scholar 

  • Hutcheon AEK, Zieske JD, Guo X (2019) 3D in vitro model for human corneal endothelial cell maturation. Exp Eye Res 184:183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ICCVAM (2010a) ICCVAM LVET test method evaluation report: recommendation to discontinue use of the low volume eye test for ocular safety testing. NIH Publication, National Institute of Environmental Heath Sciences, Triangle Park

  • ICCVAM (2010b) ICCVAM test method evaluation report: current validation status of in vitro test methods proposed for identifying eye injury hazard potential of chemicals and products. NIH. Publication No. 10-7553. National Institute of Environmental Health Sciences, Research Triangle Park,

  • Jester JV (2006) Extent of corneal injury as a biomarker for hazard assessment and the development of alternative models to the Draize rabbit eye test. Cutan Ocul Toxicol 25:41–54

    Article  CAS  PubMed  Google Scholar 

  • Jester JV, Ho-Chang J (2003) Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp Eye Res 77:581–592

    Article  CAS  PubMed  Google Scholar 

  • Jester JV, Huang J, Fisher S, Spiekerman J, Chang JH, Wright WE, Shay JW (2003) Myofibroblast differentiation of normal human keratocytes and hTERT, extended-life human corneal fibroblasts. Invest Ophthalmol Vis Sci 44:1850–1858

    Article  PubMed  Google Scholar 

  • Jester JV, Li L, Molai A, Maurer JK (2001) Extent of initial corneal injury as a basis for alternative eye irritation tests. Toxicol in Vitro 15:115–130

    Article  CAS  PubMed  Google Scholar 

  • Jirova D, Kejlova K, Janousek S, Bendova H, Maly M, Kolarova H, Dvorakova M (2014) Eye irritation hazard of chemicals and formulations assessed by methods in vitro. Neuro Endocrinol Lett 35(Suppl 2):133–140

    PubMed  Google Scholar 

  • Jones PA, Bracher M, Marenus K, Kojima H (1999) Performance of the Neutral Red uptake assay in the COLIPA international validation study on alternatives to the rabbit eye irritation test. Toxicol in Vitro 13:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Budynsky E, Cooper KJ, Decker D, Griffiths HA, Fentem JH (2001) Comparative evaluation of five in vitro tests for assessing the eye irritation potential of hair-care products. Altern Lab Anim 29:669–692

    Article  CAS  PubMed  Google Scholar 

  • Joseph A, Powell-Richards AO, Shanmuganathan VA, Dua HS (2004) Epithelial cell characteristics of cultured human limbal explants. Br J Ophthalmol 88:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung KM, Lee SH, Ryu YH, Jang WH, Jung HS, Han JH, Seok SH, Park JH, Son Y, Park YH, Lim KM (2011) A new 3D reconstituted human corneal epithelium model as an alternative method for the eye irritation test. Toxicol in Vitro 25:403–410

    Article  CAS  PubMed  Google Scholar 

  • Juretic M, Jurisic Dukovski B, Krtalic I, Reichl S, Cetina-Cizmek B, Filipovic-Grcic J, Lovric J, Pepic I (2017) HCE-T cell-based permeability model: a well-maintained or a highly variable barrier phenotype? Eur J Pharm Sci 104:23–30

    Article  CAS  PubMed  Google Scholar 

  • Kabakov AE, Gabai VL (2018) Cell death and survival assays. Methods Mol Biol 1709:107–127

    Article  CAS  PubMed  Google Scholar 

  • Kahn CR, Young E, Lee IH, Rhim JS (1993) Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest Ophthalmol Vis Sci 34:3429–3441

    CAS  PubMed  Google Scholar 

  • Kaluzhny Y, Kandarova H, Handa Y, DeLuca J, Truong T, Hunter A, Kearney P, d'Argembeau-Thornton L, Klausner M (2015) The EpiOcular Eye Irritation Test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment. Altern Lab Anim 43:101–127

    Article  PubMed  Google Scholar 

  • Kaluzhny Y, Kandarova H, Hayden P, Kubilus J, d'Argembeau-Thornton L, Klausner M (2011) Development of the EpiOcular(TM) eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation. Altern Lab Anim 39:339–364

    Article  CAS  PubMed  Google Scholar 

  • Kaluzhny Y, Kinuthia MW, Lapointe AM, Truong T, Klausner M, Hayden P (2020) Oxidative stress in corneal injuries of different origin: utilization of 3D human corneal epithelial tissue model. Exp Eye Res 190:107867

    Article  CAS  PubMed  Google Scholar 

  • Kaluzhny Y, Kinuthia MW, Truong T, Lapointe AM, Hayden P, Klausner M (2018) New human organotypic corneal tissue model for ophthalmic drug delivery studies. Invest Ophthalmol Vis Sci 59:2880–2898

    Article  PubMed  Google Scholar 

  • Kandarova H, Letasiova S, Adriaens E, Guest R, Willoughby JA Sr, Drzewiecka A, Gruszka K, Alepee N, Verstraelen S, Van Rompay AR (2018a) CON4EI: CONsortium for in vitro eye irritation testing strategy - EpiOcular time-to-toxicity (EpiOcular ET-50) protocols for hazard identification and labelling of eye irritating chemicals. Toxicol in Vitro 49:34–52

    Article  CAS  PubMed  Google Scholar 

  • Kandarova H, Letasiova S, Adriaens E, Guest R, Willoughby JA Sr, Drzewiecka A, Gruszka K, Alepee N, Verstraelen S, Van Rompay AR (2018b) CON4EI: EpiOcular Eye Irritation Test (EpiOcular EIT) for hazard identification and labelling of eye irritating chemicals. Toxicol in Vitro 49:21–33

    Article  CAS  PubMed  Google Scholar 

  • Karamichos D, Zareian R, Guo X, Hutcheon AE, Ruberti JW, Zieske JD (2012) Novel in vitro model for keratoconus disease. J Funct Biomater 3:760–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh M, Hamajima F, Ogasawara T, Hata K (2013) Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL. Toxicol in Vitro 27:2184–2192

    Article  CAS  PubMed  Google Scholar 

  • Kawakita T, Espana EM, He H, Smiddy R, Parel JM, Liu CY, Tseng SC (2006) Preservation and expansion of the primate keratocyte phenotype by downregulating TGF-beta signaling in a low-calcium, serum-free medium. Invest Ophthalmol Vis Sci 47:1918–1927

    Article  PubMed  Google Scholar 

  • Kawazu K, Midori Y, Ota A (1999) Cultured rabbit corneal epithelium elicits levofloxacin absorption and secretion. J Pharm Pharmacol 51:791–796

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Choi KH, Yun J (2018) Exploration of alternative test methods to evaluate phototoxicity of ophthalmic agents by using Statens Seruminstitut Rabbit Cornea cell lines and 3D human reconstituted cornea models. PLoS One 13:e0196735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimoto M, Shima N, Yamaguchi M, Hiraoka Y, Amano S, Yamagami S (2014) Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci 55:2337–2343

    Article  CAS  PubMed  Google Scholar 

  • Klausner M, Hayden P, Breyfogle B, Vellavance K, Osborn M, Cerven D, DeGeorge G, Kubilus J (2003) The epiocular prediction model: a reproducible in vitro means of assessing ocular irritancy. Alternative Toxicological Methods. CRC Press LLC, pp. 131-146

  • Kojima H, Ando Y, Idehara K, Katoh M, Kosaka T, Miyaoka E, Shinoda S, Suzuki T, Yamaguchi Y, Yoshimura I, Yuasa A, Watanabe Y, Omori T (2012) Validation study of the in vitro skin irritation test with the LabCyte EPI-MODEL24. Altern Lab Anim 40:33–50

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Yamaguchi H, Sozu T, Kleinstreuer N, Chae-Hyung L, Chen W, Watanabe M, Fukuda T, Yamashita K, Takezawa T (2019) Multi-laboratory validation study of the Vitrigel-eye irritancy test method as an alternative to in vivo eye irritation testing. Altern Lab Anim 47:140–157

    Article  PubMed  Google Scholar 

  • Kolle SN, Sauer UG, Moreno MC, Teubner W, Wohlleben W, Landsiedel R (2016) Eye irritation testing of nanomaterials using the EpiOcular™ eye irritation test and the bovine corneal opacity and permeability assay. Part Fibre Toxicol 13:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolle SN, Van Cott A, van Ravenzwaay B, Landsiedel R (2017) Lacking applicability of in vitro eye irritation methods to identify seriously eye irritating agrochemical formulations: Results of bovine cornea opacity and permeability assay, isolated chicken eye test and the EpiOcular™ ET-50 method to classify according to UN GHS. Regul Toxicol Pharmacol 85:33–47

    Article  CAS  PubMed  Google Scholar 

  • Kruszewski FH, Walker TL, DiPasquale LC (1997) Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Fundam Appl Toxicol 36:130–140

    Article  CAS  PubMed  Google Scholar 

  • Lambert LA, Chambers WA, Green S, Gupta KC, Hill RN, Hurley PM, Lee CC, Lee JK, Liu PT, Lowther DK et al (1993) The use of low-volume dosing in the eye irritation test. Food Chem Toxicol 31:99–103

    Article  CAS  PubMed  Google Scholar 

  • Lebrun S, Xie Y, Chavez S, Chan R, Jester JV (2019) An in vitro depth of injury prediction model for a histopathologic classification of EPA and GHS eye irritants. Toxicol in Vitro 61:104628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Hwang JH, Lim KM (2017) Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicol Res 33:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SE, Ha SJ, Jang WH, Jung KM, Jung MS, Yeo KW, Kim JS, Jeong TC, Kang MJ, Kim SY, Lee SH, Ko KY, Kim TS, Park KS, Bae S, Lim KM (2019) Me-too validation study for in vitro eye irritation test with 3D-reconstructed human cornea epithelium, MCTT HCE(TM). Toxicol in Vitro 55:173–184

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, Haddad BR, Rhim JS, Dritschilo A, Riegel A, McBride A, Schlegel R (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljubimov AV, Saghizadeh M (2015) Progress in corneal wound healing. Prog Retin Eye Res 49:17–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotz C, Schmid FF, Rossi A, Kurdyn S, Kampik D, De Wever B, Walles H, Groeber FK (2016) Alternative methods for the replacement of eye irritation testing. Altex 33:55–67

    Article  PubMed  Google Scholar 

  • Lu Q, Yin H, Grant MP, Elisseeff JH (2017) An in vitro model for the ocular surface and tear film system. Sci Rep 7:6163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T (2016) Global analysis of publicly available safety data for 9,801 substances registered under REACH from 2008-2014. Altex 33:95–109

    PubMed  PubMed Central  Google Scholar 

  • Matsuda S, Hisama M, Shibayama H, Itou N, Iwaki M (2009a) Application of the reconstructed rabbit corneal epithelium model to assess the in-vitro eye irritant test of chemicals. Yakugaku Zasshi 129:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Hisama M, Shibayama H, Itou N, Iwaki M (2009b) In vitro eye irritancy test of lauryl derivatives using the reconstructed rabbit corneal epithelium model. Toxicol in Vitro 23:555–560

    Article  CAS  PubMed  Google Scholar 

  • Matysik-Woźniak A, Paduch R, Turski WA, Maciejewski R, Jünemann AG, Rejdak R (2017) Effects of tryptophan, kynurenine and kynurenic acid exerted on human reconstructed corneal epithelium in vitro. Pharmacol Rep 69:722–729

    Article  PubMed  CAS  Google Scholar 

  • Maurer JK, Jester JV (1999) Use of in vivo confocal microscopy to understand the pathology of accidental ocular irritation. Toxicol Pathol 27:44–47

    Article  CAS  PubMed  Google Scholar 

  • Maurer JK, Parker RD, Jester JV (2002) Extent of initial corneal injury as the mechanistic basis for ocular irritation: key findings and recommendations for the development of alternative assays. Regul Toxicol Pharmacol 36:106–117

    Article  CAS  PubMed  Google Scholar 

  • McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R (2015) Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One 10:e0145266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCain NE, Binetti RR, Gettings SD, Jones BC (2002) Assessment of ocular irritation ranges of market-leading cosmetic and personal-care products using an in vitro tissue equivalent. Toxicologist 66:243

    Google Scholar 

  • McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    Article  CAS  PubMed  Google Scholar 

  • McKay TB, Karamichos D, Hutcheon AEK, Guo X, Zieske JD (2019) Corneal epithelial-stromal fibroblast constructs to study cell-cell communication in vitro. Bioengineering (Basel) 6

  • Meloni M, De Servi B, Marasco D, Del Prete S (2011) Molecular mechanism of ocular surface damage: application to an in vitro dry eye model on human corneal epithelium. Mol Vis 17:113–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michelle L (2020) US states join global push to ban animal-tested cosmetics. https://abcnews.go.com/Business/wireStory/us-states-join-global-push-ban-animal-tested-68690876. PRICE Associate Press

  • Mohan RR, Possin DE, Mohan RR, Sinha S, Wilson SE (2003) Development of genetically engineered tet HPV16-E6/E7 transduced human corneal epithelial clones having tight regulation of proliferation and normal differentiation. Exp Eye Res 77:395–407

    Article  CAS  PubMed  Google Scholar 

  • Morrison PW, Khutoryanskiy VV (2014) Advances in ophthalmic drug delivery. Ther Deliv 5:1297–1315

    Article  CAS  PubMed  Google Scholar 

  • Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J (2016) Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19:217–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahara S, Kojima H, Omori T, UYamashita A, Endo M, Satake M, Kasahara T et al (2019) A validation study of a new in vitro eye irritation test using the reconstructed human corneal epithelial tissue, LabCyte CORNEA-MODEL24. AATEX 24:11–23

    Google Scholar 

  • Nakamura T, Teshima M, Kitahara T, Sasaki H, Uematsu M, Kitaoka T, Nakashima M, Nishida K, Nakamura J, Higuchi S (2010) Sensitive and real-time method for evaluating corneal barrier considering tear flow. Biol Pharm Bull 33:107–110

    Article  CAS  PubMed  Google Scholar 

  • Narda M, Ramos-Lopez D, Mun G, Valderas-Martinez P, Granger C (2019) Three-tier testing approach for optimal ocular tolerance sunscreen. Cutan Ocul Toxicol 38:212–220

    Article  CAS  PubMed  Google Scholar 

  • Narsineni L, Foldvari M (2020) Dicationic amino substituted gemini surfactants and their nanoplexes: improved synthesis and characterization of transfection efficiency and corneal penetration in vitro. Pharm Res 37:144

    Article  PubMed  CAS  Google Scholar 

  • NIEHS & NIH (2007) Request for ocular irritancy test data from human, rabbit, and in vitro studies using standardized testing methods. Fed Regist 31:582–531,583

    Google Scholar 

  • Niranjan P, Dang AH, January BG, Gomez C, Harbell JW (2007) Use of the EpiOcular assay for preclinical qualification of formulas for human clinical studies. Toxicologist 96

  • OECD (2012) Draft OECD guideline for the testing of chemicals: the cytosensor microphysiometer test method: an in vitro method for identifying ocular corrosive and severe irritant chemicals as well as chemicals not classified as ocular irritants. OECD Publishing,

  • OECD (2017a) Test No. 405: acute eye irritation/corrosion. OECD Guidelines for the Testing of Chemicals. OECD Publishing, https://www.oecd.org/env/test-no-405-acute-eye-irritation-corrosion-9789264185333-en.htm; https://doi.org/10.1787/9789264203860-en

  • OECD (2017b) Test No. 437. Bovine corneal opacity and permeability test: an in vitro assay of ocular irritancy. OECD Publishing, https://doi.org/10.1787/9789264203846-en

  • OECD (2017c) Test No. 460: fluorescein leakage test method for identifying ocular corrosives and severe irritants. OECD Publishing, https://doi.org/10.1787/9789264185401-en

  • OECD (2018a) Guidance document on an integrated approach on testing and assessment for serious eye damage and eye irritation. OECD Publishing,

  • OECD (2018b) Test No. 438. Isolated chicken eye test method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage. OECD Publishing, https://doi.org/10.1787/20745788

  • OECD (2018c) Test No. 491. Draft guideline for the testing of chemicals. The short time exposure in vitro test method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage. OECD Guidelines for the Testing of Chemicals. OECD Publishing, https://doi.org/10.1787/9789264242432-en

  • OECD (2019a) Test No. 492. Reconstructed human cornea-like epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. OECD Publishing, https://doi.org/10.1787/20745788

  • OECD (2019b) Test No. 494: Vitrigel-eye irritancy test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. OECD Publishing, https://doi.org/10.1787/20745788

  • Olivieri M, Cristaldi M, Pezzino S, Rusciano D, Tomasello B, Anfuso CD, Lupo G (2018) Phenotypic characterization of the SIRC (Statens Seruminstitut Rabbit Cornea) cell line reveals a mixed epithelial and fibroblastic nature. Exp Eye Res 172:123–127

    Article  CAS  PubMed  Google Scholar 

  • OSHA (2009) Foundation of workplace chemical safety programs. Available at: https://www.osha.gov/dsg/hazcom/global.html, accessed on July 13, 2020.

  • Palchesko RN, Lathrop KL, Funderburgh JL, Feinberg AW (2015) In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep 5:7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parish ST, Aschner M, Casey W, Corvaro M, Embry MR, Fitzpatrick S, Kidd D, Kleinstreuer NC, Lima BS, Settivari RS, Wolf DC, Yamazaki D, Boobis A (2020) An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul Toxicol Pharmacol 112:104592

    Article  PubMed  Google Scholar 

  • Pauwels M, Rogiers V (2007) EU legislations affecting safety data availability of cosmetic ingredients. Regul Toxicol Pharmacol 49:308–315

    Article  CAS  PubMed  Google Scholar 

  • Pawar PK, Majumdar DK (2006) Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas. AAPS PharmSciTech 7:E13

    Article  PubMed  Google Scholar 

  • Pepic I, Lovric J, Cetina-Cizmek B, Reichl S, Filipovic-Grcic J (2014) Toward the practical implementation of eye-related bioavailability prediction models. Drug Discov Today 19:31–44

    Article  PubMed  Google Scholar 

  • Pfannenbecker U, Bessou-Touya S, Faller C, Harbell J, Jacob T, Raabe H, Tailhardat M, Alepee N, De Smedt A, De Wever B, Jones P, Kaluzhny Y, Le Varlet B, McNamee P, Marrec-Fairley M, Van Goethem F (2013) Cosmetics Europe multi-laboratory pre-validation of the EpiOcular reconstituted human tissue test method for the prediction of eye irritation. Toxicol in Vitro 27:619–626

    Article  CAS  PubMed  Google Scholar 

  • Piehl M, Carathers M, Soda R, Cerven D, DeGeorge G (2011) Porcine Corneal Ocular Reversibility Assay (PorCORA) predicts ocular damage and recovery for global regulatory agency hazard categories. Toxicol in Vitro 25:1912–1918

    Article  CAS  PubMed  Google Scholar 

  • Postnikoff CK, Pintwala R, Williams S, Wright AM, Hileeto D, Gorbet MB (2014) Development of a curved, stratified, in vitro model to assess ocular biocompatibility. PLoS One 9:e96448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prabst K, Engelhardt H, Ringgeler S, Hubner H (2017) Basic colorimetric proliferation assays: MTT, WST, and Resazurin. Methods Mol Biol 1601:1–17

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Noonan JS (1998) Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87:1479–1488

    Article  CAS  PubMed  Google Scholar 

  • Prinsen MK (1996) The chicken enucleated eye test (CEET): a practical (pre)screen for the assessment of eye irritation/corrosion potential of test materials. Food Chem Toxicol 34:291–296

    Article  CAS  PubMed  Google Scholar 

  • Purssell A, Lau R, Boggild AK (2017) Azithromycin and doxycycline attenuation of Acanthamoeba virulence in a human corneal tissue model. J Infect Dis 215:1303–1311

    CAS  PubMed  Google Scholar 

  • Ramaesh K, Dhillon B (2003) Ex vivo expansion of corneal limbal epithelial/stem cells for corneal surface reconstruction. Eur J Ophthalmol 13:515–524

    Article  CAS  PubMed  Google Scholar 

  • Reader SJ, Blackwell V, O'Hara R, Clothier RH, Griffin G, Balls M (1990) Neutral red release from pre-loaded cells as an in vitro approach to testing for eye irritancy potential. Toxicol in Vitro 4:264–266

    Article  CAS  PubMed  Google Scholar 

  • Reichl S (2008) Cell culture models of the human cornea - a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro. J Pharm Pharmacol 60:299–307

    Article  CAS  PubMed  Google Scholar 

  • Reichl S, Bednarz J, Muller-Goymann CC (2004) Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br J Ophthalmol 88:560–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichl S, Dohring S, Bednarz J, Muller-Goymann CC (2005) Human cornea construct HCC-an alternative for in vitro permeation studies? A comparison with human donor corneas. Eur J Pharm Biopharm 60:305–308

    Article  CAS  PubMed  Google Scholar 

  • Reichl S, Kolln C, Hahne M, Verstraelen J (2011) In vitro cell culture models to study the corneal drug absorption. Expert Opin Drug Metab Toxicol 7:559–578

    Article  CAS  PubMed  Google Scholar 

  • Reichl S, Muller-Goymann CC (2003) The use of a porcine organotypic cornea construct for permeation studies from formulations containing befunolol hydrochloride. Int J Pharm 250:191–201

    Article  CAS  PubMed  Google Scholar 

  • Roggeband R, York M, Pericoi M, Braun W (2000) Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products. Food Chem Toxicol 38:727–734

    Article  CAS  PubMed  Google Scholar 

  • Ronkko S, Vellonen KS, Jarvinen K, Toropainen E, Urtti A (2016) Human corneal cell culture models for drug toxicity studies. Drug Deliv Transl Res 6:660–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sareen D, Saghizadeh M, Ornelas L, Winkler MA, Narwani K, Sahabian A, Funari VA, Tang J, Spurka L, Punj V, Maguen E, Rabinowitz YS, Svendsen CN, Ljubimov AV (2014) Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med 3:1002–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Article  CAS  PubMed  Google Scholar 

  • Schneider AI, Maier-Reif K, Graeve T (1999) Constructing an in vitro cornea from cultures of the three specific corneal cell types. In Vitro Cell Dev Biol Anim 35:515–526

    Article  CAS  PubMed  Google Scholar 

  • Scott L, Eskes C, Hoffmann S, Adriaens E, Alepee N, Bufo M, Clothier R, Facchini D, Faller C, Guest R, Harbell J, Hartung T, Kamp H, Varlet BL, Meloni M, McNamee P, Osborne R, Pape W, Pfannenbecker U, Prinsen M, Seaman C, Spielmann H, Stokes W, Trouba K, Berghe CV, Goethem FV, Vassallo M, Vinardell P, Zuang V (2010) A proposed eye irritation testing strategy to reduce and replace in vivo studies using bottom-up and top-down approaches. Toxicol in Vitro 24:1–9

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Byun WY, Alisafaei F, Georgescu A, Yi YS, Massaro-Giordano M, Shenoy VB, Lee V, Bunya VY, Huh D (2019) Multiscale reverse engineering of the human ocular surface. Nat Med 25:1310–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settivari RS, Amado RA, Corvaro M, Visconti NR, Kan L, Carney EW, Boverhof DR, Gehen SC (2016) Tiered application of the neutral red release and EpiOcular™ assays for evaluating the eye irritation potential of agrochemical formulations. Regul Toxicol Pharmacol 81:407–420

    Article  CAS  PubMed  Google Scholar 

  • Shafaie S, Hutter V, Cook MT, Brown MB, Chau DY (2016) In vitro cell models for ophthalmic drug development applications. Biores Open Access 5:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif R, Priyadarsini S, Rowsey TG, Ma JX, Karamichos D (2018) Corneal tissue engineering: an in vitro model of the stromal-nerve interactions of the human cornea. J Vis Exp. https://doi.org/10.3791/56308

  • Sheasgreen J, Klausner M, Kandarova H, Ingalls D (2009) The MatTek story - how the three Rs principles led to 3-D tissue success! Altern Lab Anim 37:611–622

    Article  CAS  PubMed  Google Scholar 

  • Shima N, Kimoto M, Yamaguchi M, Yamagami S (2011) Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci 52:8711–8717

    Article  CAS  PubMed  Google Scholar 

  • Silk JC (2003) Development of a globally harmonized system for hazard communication. Int J Hyg Environ Health 206:447–452

    Article  PubMed  Google Scholar 

  • Siran W, Ghezzi CE, Cairns DM, Pollard RE, Chen Y, Gomes R, McKay TB, Pouli D, Jamali A, Georgakoudi I, Funderburgh JL, Kenyon K, Hamrah P, Kaplan DL (2018) Human corneal tissue model for nociceptive assessments. Adv Healthc Mater 7:e1800488

    Article  PubMed  CAS  Google Scholar 

  • Sosnová-Netuková M, Kuchynka P, Forrester JV (2007) The suprabasal layer of corneal epithelial cells represents the major barrier site to the passive movement of small molecules and trafficking leukocytes. Br J Ophthalmol 91:372–378

    Article  PubMed  Google Scholar 

  • Spielmann H, Liebsch M, Moldenhauer F, Holzhutter HG, de Silva O (1995) Modern biostatistical methods for assessing in vitro/in vivo correlation of severely eye irritating chemicals in a validation study of in vitro alternatives to the Draize eye test. Toxicol in Vitro 9:549–556

    Article  CAS  PubMed  Google Scholar 

  • Spöler F, Kray O, Kray S, Panfil C, Schrage NF (2015) The ex vivo eye irritation test as an alternative test method for serious eye damage/eye irritation. Altern Lab Anim 43:163–179

    Article  PubMed  Google Scholar 

  • Stepanenko AA, Kavsan VM (2012) Immortalization and malignant transformation of eukaryotic cells. Tsitol Genet 46:36–75

    CAS  PubMed  Google Scholar 

  • Stephens ML, Mak NS et al (2013) History of the 3Rs in toxicity testing: from Russell and Burch to 21st century toxicology. In: Allen D, Walters M (eds) Reducing, refining and replacing the use of animals in toxicity testing. RSC, Publishing, Cambridge, pp 1–39

    Google Scholar 

  • Stern M, Klausner M, Alvarado R, Renskers K, Dickens M (1998) Evaluation of the EpiOcular TM tissue model as an alternative to the Draize eye irritation test. Toxicol in Vitro 12:455–461

    Article  CAS  PubMed  Google Scholar 

  • Sun CC, Chiu HT, Lin YF, Lee KY, Pang JH (2015) Y-27632, a ROCK inhibitor, promoted limbal epithelial cell proliferation and corneal wound healing. PLoS One 10:e0144571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Susaimanickam PJ, Maddileti S, Pulimamidi VK, Boyinpally SR, Naik RR, Naik MN, Reddy GB, Sangwan VS, Mariappan I (2017) Generating minicorneal organoids from human induced pluripotent stem cells. Development 144:2338–2351

    CAS  PubMed  Google Scholar 

  • Suuronen EJ, McLaughlin CR, Stys PK, Nakamura M, Munger R, Griffith M (2004) Functional innervation in tissue engineered models for in vitro study and testing purposes. Toxicol Sci 82:525–533

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Hayashi K, Abo T, Koike M, Sakaguchi H, Nishiyama N (2011) The Short Time Exposure (STE) test for predicting eye irritation potential: intra-laboratory reproducibility and correspondence to globally harmonized system (GHS) and EU eye irritation classification for 109 chemicals. Toxicol in Vitro 25:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Koike M, Honda H, Ito Y, Sakaguchi H, Suzuki H, Nishiyama N (2008) Development of the short time exposure (STE) test: an in vitro eye irritation test using SIRC cells. Toxicol in Vitro 22:760–770

    Article  CAS  PubMed  Google Scholar 

  • Takezawa T, Nishikawa K, Wang PC (2011) Development of a human corneal epithelium model utilizing a collagen vitrigel membrane and the changes of its barrier function induced by exposing eye irritant chemicals. Toxicol in Vitro 25:1237–1241

    Article  CAS  PubMed  Google Scholar 

  • Tegtmeyer S, Papantoniou I, Muller-Goymann CC (2001) Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur J Pharm Biopharm 51:119–125

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Clegg A, Chauhan A, Willcox MD (1997) Modulation of cytokine production from an EpiOcular corneal cell culture model in response to Staphylococcus aureus superantigen. Aust N Z J Ophthalmol 25(Suppl 1):S43–S45

    Article  PubMed  Google Scholar 

  • Toropainen E, Ranta VP, Talvitie A, Suhonen P, Urtti A (2001) Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest Ophthalmol Vis Sci 42:2942–2948

    CAS  PubMed  Google Scholar 

  • U.S.Congress (2017) H.R.2790 - Humane Cosmetics Act, 115th Congress. Rep. McSally, Martha (Introduced 06/06/2017). Available at. https://www.congress.gov/bill/115th-congress/house-bill/2790. House - Energy and Commerce,

  • Uematsu M, Mohamed YH, Onizuka N, Ueki R, Inoue D, Fujikawa A, Kitaoka T (2015) A novel in vivo corneal trans-epithelial electrical resistance measurement device. J Pharmacol Toxicol Methods 76:65–71

    Article  CAS  PubMed  Google Scholar 

  • Uematsu M, Mohamed YH, Onizuka N, Ueki R, Inoue D, Fujikawa A, Sasaki H, Kitaoka T (2016) Less invasive corneal transepithelial electrical resistance measurement method. Ocul Surf 14:37–42

    Article  PubMed  Google Scholar 

  • UN (2003) Globally Harmonized System of classification and labeling of chemicals (GHS) 8th revision, 2019, http://www.unece.org/trans/danger/publi/ghs/ghs_rev08/08files_e.html (Accessed May 1, 2020).

  • UN (2017) United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Seventh Revised Edition, Availa-ble at: [http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev07/English /ST-SG-AC10-30- Rev7e.pdf]. New York and Geneva: United Nations,

  • Van den Berghe C, Guillet MC, Compan D (2005) Performance of porcine corneal opacity and permeability assay to predict eye irritation for water-soluble cosmetic ingredients. Toxicol in Vitro 19:823–830

    Article  PubMed  CAS  Google Scholar 

  • Van den Bogerd B, Zakaria N, Adam B, Matthyssen S, Koppen C, Ni Dhubhghaill S (2019) Corneal endothelial cells over the past decade: are we missing the mark(er)? Transl Vis Sci Technol 8:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goethem F, Adriaens E, Alepee N, Straube F, De Wever B, Cappadoro M, Catoire S, Hansen E, Wolf A, Vanparys P (2006) Prevalidation of a new in vitro reconstituted human cornea model to assess the eye irritating potential of chemicals. Toxicol in Vitro 20:1–17

    Article  PubMed  CAS  Google Scholar 

  • Van Rompay AR, Alepee N, Nardelli L, Hollanders K, Leblanc V, Drzewiecka A, Gruszka K, Guest R, Kandarova H, Willoughby JA Sr, Verstraelen S, Adriaens E (2018) CON4EI: SkinEthic Human Corneal Epithelium Eye Irritation Test (SkinEthic HCE EIT) for hazard identification and labelling of eye irritating chemicals. Toxicol in Vitro 49:11–20

    Article  PubMed  CAS  Google Scholar 

  • Vellonen KS, Mannermaa E, Turner H, Hakli M, Wolosin JM, Tervo T, Honkakoski P, Urtti A (2010) Effluxing ABC transporters in human corneal epithelium. J Pharm Sci 99:1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraelen S, Maglennon G, Hollanders K, Boonen F, Adriaens E, Alepee N, Drzewiecka A, Gruszka K, Kandarova H, Willoughby JA Sr, Guest R, Schofield J, Van Rompay AR (2017) CON4EI: Bovine Corneal Opacity and Permeability (BCOP) test for hazard identification and labelling of eye irritating chemicals. Toxicol in Vitro 44:122–133

    Article  CAS  PubMed  Google Scholar 

  • Verstraelen S, Maglennon G, Hollanders K, Boonen F, Adriaens E, Alepee N, Drzewiecka A, Gruszka K, Kandarova H, Willoughby JA Sr, Guest R, Schofield J, Van Rompay AR (2018) Reprint of “CON4EI: Bovine Corneal Opacity and Permeability (BCOP) test for hazard identification and labelling of eye irritating chemicals”. Toxicol in Vitro 49:53–64

    Article  CAS  PubMed  Google Scholar 

  • Verstraelen S, Van Rompay AR (2018) CON4EI: development of serious eye damage and eye irritation testing strategies with respect to the requirements of the UN GHS/EU CLP hazard categories. Toxicol in Vitro 49:2–5

    Article  CAS  PubMed  Google Scholar 

  • Vitrigel-EIT-VMT (2017) Validation study of the Vitrigel-EIT method as an alternative to in vivo eye irritation testing. Study report, Version 2. March 25, 2017. VITRIGEL-EIT Validation Management Team (VMT); avaliable at: https://www.jacvam.jp/files/list/06/06_09_D1.pdf.

  • Wang S, Ghezzi CE, Gomes R, Pollard RE, Funderburgh JL, Kaplan DL (2017) In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials 112:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wilson SL, Ahearne M, Hopkinson A (2015) An overview of current techniques for ocular toxicity testing. Toxicology 327:32–46

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Du Y, Mann MM, Funderburgh JL, Wagner WR (2014) Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue. Exp Eye Res 120:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X (2020) Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 10:1360–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • www.allaboutvision.com (2020) The anatomy and the structure of the human eye and the cornea. Accessed on July 24, 2020., https://www.allaboutvision.com/resources/anatomy.htm and https://www.allaboutvision.com/resources/cornea.htm,

  • www.episkin.com (2020) SkinEthic HCE / Corneal Epithelium; https://www.episkin.com/HCE-Corneal-Epithelium (accessed September 28, 2020).

  • www.jpte.co.jp (2020) LabCyte CORNEA-MODEL; http://www.jpte.co.jp/english/business/LabCyte/CORNEAmodel.html; (accessed September 28, 2020).

  • www.keraskin.co.kr (2020) MCTT HCE™ Mucosal model; http://www.keraskin.co.kr/product/mucosalmodel.asp; (accessed September 28, 2020).

  • www.mattek.com (2020) EpiOcuar-TM; https://www.mattek.com/products/epiocular/; (accessed September 28, 2020).

  • Xiang CD, Batugo M, Gale DC, Zhang T, Ye J, Li C, Zhou S, Wu EY, Zhang EY (2009) Characterization of human corneal epithelial cell model as a surrogate for corneal permeability assessment: metabolism and transport. Drug Metab Dispos 37:992–998

    Article  CAS  PubMed  Google Scholar 

  • Xie HT, Chen SY, Li GG, Tseng SC (2012) Isolation and expansion of human limbal stromal niche cells. Invest Ophthalmol Vis Sci 53:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZZ, Li ZJ, Du LX, Li J, Wang LY (2013) Using bovine pituitary extract to increase proliferation of keratocytes and maintain their phenotype in vitro. Int J Ophthalmol 6:758–765

    PubMed  PubMed Central  Google Scholar 

  • Yam GH, Yusoff NZ, Kadaba A, Tian D, Myint HH, Beuerman RW, Zhou L, Mehta JS (2015) Ex vivo propagation of human corneal stromal “activated keratocytes” for tissue engineering. Cell Transplant 24:1845–1861

    Article  PubMed  Google Scholar 

  • Yamaguchi H, Kojima H, Takezawa T (2013) Vitrigel-eye irritancy test method using HCE-T cells. Toxicol Sci 135:347–355

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Kojima H, Takezawa T (2016) Predictive performance of the Vitrigel-eye irritancy test method using 118 chemicals. J Appl Toxicol 36:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Takezawa T (2018) Fabrication of a corneal model composed of corneal epithelial and endothelial cells via a collagen Vitrigel membrane functioned as an acellular stroma and its application to the corneal permeability test of chemicals. Drug Metab Dispos 46:1684–1691

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Shima N, Kimoto M, Ebihara N, Murakami A, Yamagami S (2015) Markers for distinguishing cultured human corneal endothelial cells from corneal stromal myofibroblasts. Curr Eye Res 40:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T (2018) Inflammatory response in dry eye. Invest Ophthalmol Vis Sci 59:Des192–des199

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Kawasaki S, Young RD, Fukuoka H, Tanioka H, Nakatsukasa M, Quantock AJ, Kinoshita S (2009) Genomic aberrations and cellular heterogeneity in SV40-immortalized human corneal epithelial cells. Invest Ophthalmol Vis Sci 50:604–613

    Article  PubMed  Google Scholar 

  • Yang H, Kim DE, Jang WH, An S, Cho SA, Jung MS, Lee JE, Yeo KW, Koh SB, Jeong TC, Kang MJ, Chun YJ, Lee SH, Lim KM, Bae S (2017) Prevalidation trial for a novel in vitro eye irritation test using the reconstructed human cornea-like epithelial model, MCTT HCE™. Toxicol in Vitro 39:58–67

    Article  CAS  PubMed  Google Scholar 

  • Ye DJ, Kwon YJ, Baek HS, Shin S, Lee C, Yun JW, Nam KT, Lim KM, Chun YJ (2018) Discovery of ezrin expression as a potential biomarker for chemically induced ocular irritation using human corneal epithelium cell line and a reconstructed human cornea-like epithelium model. Toxicol Sci 165:335–346

    Article  CAS  PubMed  Google Scholar 

  • Yeung DT, Harper JR, Platoff GE Jr (2020) Supporting fundamental chemical toxicology research to inform medical countermeasure developments: the National Institutes of Health Chemical Countermeasures Research Program. Chem Res Toxicol. https://doi.org/10.1021/acs.chemrestox.0c00086

  • Zaki AA, Elalfy MS, Said DG, Dua HS (2015) Deep anterior lamellar keratoplasty--triple procedure: a useful clinical application of the pre-Descemetʼs layer (Duaʼs layer). Eye (Lond) 29:323–326

    Article  CAS  Google Scholar 

  • Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY (2008) Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos 36:1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Afshari NA (2016) Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest Ophthalmol Vis Sci 57:6878–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Han L, Bae Y, Manickam DS (2019) Lucifer Yellow - a robust paracellular permeability marker in a cell model of the human blood-brain barrier. J Vis Exp. https://doi.org/10.3791/58900

  • Zhu Q, Zhu Y, Tighe S, Liu Y, Hu M (2019) Engineering of human corneal endothelial cells in vitro. Int J Med Sci 16:507–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorn-Kruppa M, Tykhonova S, Belge G, Bednarz J, Diehl HA, Engelke M (2005) A human corneal equivalent constructed from SV40-immortalised corneal cell lines. Altern Lab Anim 33:37–45

    Article  CAS  PubMed  Google Scholar 

  • Zuang V (2001) The neutral red release assay: a review. Altern Lab Anim 29:575–599

    Article  CAS  PubMed  Google Scholar 

  • Zuang V, Eskes C, Griesinger C, Hartung T (2008) ECVAM key area topical toxicity: update on activities. Proc. 6th World Congress on Alternatives & Animal Use in the Life Sciences. Japanese Society for Alternatives to Animal Experiments. AATEX 14:523–528

    Google Scholar 

  • Zuang V, Schäffer M, Tuomainen A, Amcoff P, et al. (2013) EURL ECVAM progress report on the development, validation and regulatory acceptance of alternative methods (2010-2013). Prepared in the framework of Directive 76/768/EEC and Regulation (EC) No 1223/2009 on cosmetic products. European Commission, Joint Research Centre Institute for Health and Consumer Protection, doi:https://doi.org/10.2788/90736

Download references

Acknowledgments

The authors thank Dr. Silvia Letasiova of MatTek IVLSL and Jennifer Molignano of MatTek Corporation for reviewing and editing the manuscript. The EpiCorneal tissue model was developed in part using funds from SBIR grant #R44 ES020074 from the Department of Health and Human Services of the National Institute of Environmental Health Sciences (Bethesda, MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Kaluzhny.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaluzhny, Y., Klausner, M. In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell.Dev.Biol.-Animal 57, 207–237 (2021). https://doi.org/10.1007/s11626-020-00533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00533-7

Keywords

Navigation