Skip to main content

Advertisement

Log in

In vitro and ex vivo corneal penetration and absorption models

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Topical drug administration is the preferred route of drug delivery to the eye despite the poor bioavailability. To develop more efficient drug carriers, reliable in vitro or ex vivo models are required in the early stages of formulation development, with such methods being faster, cheaper, and more ethical alternatives to in vivo studies. In vitro cell culture models are increasingly being used for transcorneal penetration studies, with primary cell cultures and immortalized cell lines now giving way to the development of organotypic corneal constructs for studying ocular drug bioavailability. Artificially cultured human corneal equivalents are still in the early stages of development, but present tremendous potential for corneal penetration studies. Ex vivo models using excised animal tissue are also being used to study corneal penetration with promising results, although significant inter-species variations need to be considered. This review discusses the in vitro and ex vivo models currently being used to study corneal penetration and evaluates their advantages and limitations with a focus on diffusion cell assemblies. In addition to the tissue used, the diffusion cell set-up can significantly influence the penetration profile and should be cautiously adjusted to simulate clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HCE:

Human corneal epithelial cells

TEER:

Transepithelial electrical resistance

p-HCl:

Pilocarpine hydrochloride

HCE-T:

Transformed human corneal epithelial cells

SIRC:

Statens Serum Institut rabbit corneal cells

S-HCE:

SkinEthic human corneal epithelium

C-HCE:

Clonetics human corneal epithelium

HCC:

Human corneal construct

CsA:

Cyclosporine A

GBR:

Glutathione bicarbonate ringer

PBS:

Phosphate-buffered saline

BSS:

Balanced salt solution

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

SLNs:

Solid lipid nanoparticles

References

  1. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–62.

    Article  CAS  PubMed  Google Scholar 

  2. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.

    Article  CAS  PubMed  Google Scholar 

  3. Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:188.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Koevary SB. Pharmacokinetics of topical ocular drug delivery: potential uses for the treatment of diseases of the posterior segment and beyond. Curr Drug Metab. 2003;4(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  5. Ashton P, Wang W, Lee VH. Location of penetration and metabolic barriers to levobunolol in the corneal epithelium of the pigmented rabbit. J Pharmacol Exp Ther. 1991;259(2):719–24.

    CAS  PubMed  Google Scholar 

  6. Ding S. Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today. 1998;1(8):328–35.

    Article  CAS  Google Scholar 

  7. Lee Y-C, Millard JW, Negvesky JG, Butrus IS, Yalkowsky HS. Formulation and in vivo evaluation of ocular insert containing phenylephrine and tropicamide. Int J Pharm. 1999;182(1):121–6.

    Article  CAS  PubMed  Google Scholar 

  8. Jain RL, Shastri JP. Study of ocular drug delivery system using drug-loaded liposomes. Int J Pharm Investig. 2011;1(1):35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garhwal R, Shady SF, Ellis EJ, Ellis JY, Leahy CD, McCarthy SP, et al. Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. Invest Ophthalmol Vis Sci. 2012;53(3):1341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aburahma MH, Mahmoud AA. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta S, Galpalli N, Agrawal S, Srivastava S, Saxena R. Recent advances in pharmacotherapy of glaucoma. Indian J Pharmacol. 2008;40(5 Suppl):197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jain D, Carvalho E, Banerjee R. Biodegradable hybrid polymeric membranes for ocular drug delivery. Acta Biomater. 2010;6(4):1370–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mealy JE, Fedorchak MV, Little SR. In vitro characterization of a controlled-release ocular insert for delivery of brimonidine tartrate. Acta Biomater. 2014;10(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  14. Rathore KS, Nema RK, Sisodia SS. Timolol maleate a gold standard drug in glaucoma used as ocular films and inserts: an overview. Int J Pharm Sci Rev Res. 2010;3(1):23–9.

    CAS  Google Scholar 

  15. Sharma J, Sharma S, Kaura A, Durani S. Formulation and in-vitro evaluation of moxifloxacin ocular inserts. Int J Pharm Pharm Sci. 2014;6(10):177–9.

    Google Scholar 

  16. Carlfors J, Edsman K, Petersson R, Jörnving K. Rheological evaluation of Gelrite® in situ gels for ophthalmic use. Eur J Pharm Sci. 1998;6(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  17. El-Kamel AH. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002;241(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Wang Y. Development of an ex vivo method for evaluation of precorneal residence of topical ophthalmic formulations. AAPS PharmSciTech. 2009;10(3):796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu C, Qi H, Chen W, Huang C, Su C, Li W, et al. Preparation and evaluation of a Carbopol®/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi. 2007;127(1):183–91.

    Article  CAS  PubMed  Google Scholar 

  20. Yang D, Armitage B, Marder SR. Cubic liquid-crystalline nanoparticles. Angew Chem Int Ed Engl. 2004;43(34):4402–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bochot A, Fattal E, Grossiord JL, Puisieux F, Couvreur P. Characterization of a new ocular delivery system based on a dispersion of liposomes in a thermosensitive gel. Int J Pharm. 1998;162(1–2):119–27.

    Article  CAS  Google Scholar 

  22. El-Gazayerly ON, Hikal AH. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm. 1997;158(2):121–7.

    Article  CAS  Google Scholar 

  23. Nagarsenker MS, Londhe VY, Nadkarni GD. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm. 1999;190(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  24. Mosallaei N, Banaee T, Farzadnia M, Abedini E, Ashraf H, Malaekeh-Nikouei B. Safety evaluation of nanoliposomes containing cyclosporine a after ocular administration. Curr Eye Res. 2012;37(6):453–6.

    Article  CAS  PubMed  Google Scholar 

  25. Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol (Copenh). 2010;88(8):901–4.

    Article  CAS  Google Scholar 

  26. Chiang CH, Tung SM, Lu DW, Yeh MK. In vitro and in vivo evaluation of an ocular delivery system of 5-fluorouracil microspheres. J Ocul Pharmacol Ther. 2001;17(6):545–53.

    Article  CAS  PubMed  Google Scholar 

  27. Zimmer AK, Zerbe H, Kreuter J. Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye I. In vitro and in vivo characterisation. J Control Release. 1994;32(1):57–70.

    Article  CAS  Google Scholar 

  28. Vega E, Gamisans F, García ML, Chauvet A, Lacoulonche F, Egea MA. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97(12):5306–17.

    Article  CAS  PubMed  Google Scholar 

  29. Tseng C-L, Chen K-H, Su W-Y, Lee Y-H, Wu C-C, Lin F-H. Cationic gelatin nanoparticles for drug delivery to the ocular surface: in vitro and in vivo evaluation. J Nanomater. 2013;2013:11.

    Google Scholar 

  30. Lacoulonche F, Gamisans F, Chauvet A, García ML, Espina M, Egea MA. Stability and in vitro drug release of flurbiprofen-loaded poly-ε- caprolactone nanospheres. Drug Dev Ind Pharm. 1999;25(9):983–93.

    Article  CAS  PubMed  Google Scholar 

  31. Yenice I, Mocan MC, Palaska E, Bochot A, Bilensoy E, Vural I, et al. Hyaluronic acid coated poly-ε-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res. 2008;87(3):162–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lallemand F, Felt-Baeyens O, Besseghir K, Behar-Cohen F, Gurny R. Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56(3):307–18.

    Article  CAS  PubMed  Google Scholar 

  33. Yanagawa A, Mizushima Y, Komatsu A, Horiuchi M, Shirasawa E, Igarashi R. Application of a drug delivery system to a steroidal ophthalmic preparation with lipid microspheres. J Microencapsul. 1987;4(4):329–31.

    Article  CAS  PubMed  Google Scholar 

  34. Ceulemans J, Ludwig A. Optimisation of carbomer viscous eye drops: an in vitro experimental design approach using rheological techniques. Eur J Pharm Biopharm. 2002;54(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  35. Hägerström H, Paulsson M, Edsman K. Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological conditions using a rheological method. Eur J Pharm Sci. 2000;9(3):301–9.

    Article  PubMed  Google Scholar 

  36. Madsen F, Eberth K, Smart JD. A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration. J Control Release. 1998;50(1–3):167–78.

    Article  CAS  PubMed  Google Scholar 

  37. Lehr CM, Lee YH, Lee VHL. Improved ocular penetration of gentamicin by mucoadhesive polymer polycarbophil in the pigmented rabbit. Invest Ophthalmol Vis Sci. 1994;35(6):2809–14.

    CAS  PubMed  Google Scholar 

  38. De Oliveira FG, Viana FAB, Silva ROS, Lobato FCF, Ribeiro RR, Fanca JR, et al. Mucoadhesive chitosan films as a potential ocular delivery system for ofloxacin: preliminary in vitro studies. Vet Ophthalmol. 2014;17(2):150–5.

    Article  CAS  Google Scholar 

  39. Hermans K, Van Den Plas D, Kerimova S, Carleer R, Adriaensens P, Weyenberg W, et al. Development and characterization of mucoadhesive chitosan films for ophthalmic delivery of cyclosporine A. Int J Pharm. 2014;472(1–2):10–9.

    Article  CAS  PubMed  Google Scholar 

  40. Horvát G, Gyarmati B, Berkó S, Szabó-Révész P, Szilágyi BÁ, Szilágyi A, et al. Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur J Pharm Sci. 2015;67:1–11.

    Article  PubMed  CAS  Google Scholar 

  41. Khutoryanskaya OV, Morrison PWJ, Seilkhanov SK, Mussin MN, Ozhmukhametova EK, Rakhypbekov TK, et al. Hydrogen-bonded complexes and blends of poly(acrylic acid) and methylcellulose: nanoparticles and mucoadhesive films for ocular delivery of riboflavin. Macromol Biosci. 2014;14(2):225–34.

    Article  CAS  PubMed  Google Scholar 

  42. Tártara LI, Palma SD, Allemandi D, Ahumada MI, Llabot JM. New mucoadhesive polymeric film for ophthalmic administration of acetazolamide. Recent Pat Drug Deliv Formul. 2014;8(3):224–32.

    Article  PubMed  CAS  Google Scholar 

  43. Ceulemans J, Vinckier I, Ludwig A. The use of xanthan gum in an ophthalmic liquid dosage form: rheological characterization of the interaction with mucin. J Pharm Sci. 2002;91(4):1117–27.

    Article  CAS  PubMed  Google Scholar 

  44. Thilek Kumar M, Bharathi D, Balasubramaniam J, Kant S, Pandit JK. pH-induced in situ gelling systems of indomethacin for sustained ocular delivery. Indian J Pharm Sci. 2005;67(3):327–33.

    Google Scholar 

  45. Amiel H. Viscous tetracaine hydrochloride 0.5% for topical anesthesia in cataract surgery. Expert Rev Ophthalmol. 2008;3(1):17–20.

    Article  CAS  Google Scholar 

  46. Ismail S, Mohammed FA, Ismail MA. Formulation and evaluation of some selected timolol maleate ophthalmic preparations. Bull Pharm Sci. 2012;35(APRT2):181–97.

    CAS  Google Scholar 

  47. Petricek I, Berta A, Higazy MT, Németh J, Prost ME. Hydroxypropyl-guar gellable lubricant eye drops for dry eye treatment. Expert Opin Pharmacother. 2008;9(8):1431–6.

    Article  CAS  PubMed  Google Scholar 

  48. Dey S. Corneal cell culture models: a tool to study corneal drug absorption. Expert Opin Drug Metab Toxicol. 2011;7(5):529–32.

    Article  CAS  PubMed  Google Scholar 

  49. Scholz M, Lin J-EC, Lee VHL, Keipert S. Pilocarpine permeability across ocular tissues and cell cultures: influence of formulation parameters. J Ocul Pharmacol Ther. 2002;18(5):455–68.

    Article  CAS  PubMed  Google Scholar 

  50. Pretor S, Bartels J, Lorenz T, Dahl K, Finke JH, Peterat G, et al. Cellular uptake of coumarin-6 under microfluidic conditions into HCE-T cells from nanoscale formulations. Mol Pharm. 2015;12(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  51. Toropainen E, Ranta VP, Talvitte A, Suhonen P, Urtti A. Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest Ophthalmol Vis Sci. 2001;42(12):2942–8.

    CAS  PubMed  Google Scholar 

  52. Xiang CD, Batugo M, Gale DC, Zhang T, Ye J, Li C, et al. Characterization of human corneal epithelial cell model as a surrogate for corneal permeability assessment: metabolism and transport. Drug Metab Dispos. 2009;37(5):992–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kulkarni AA, Chang W, Shen J, Welty D. Use of Clonetics® human corneal epithelial cell model for evaluating corneal penetration and hydrolysis of ophthalmic drug candidates. Invest Ophthalmol Vis Sci. 2011;52(14):3259.

    Google Scholar 

  54. Tegtmeyer S, Papantoniou I, Müller-Goymann CC. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur J Pharm Biopharm. 2001;51(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  55. Reichl S, Bednarz J, Müller-Goymann CC. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br J Ophthalmol. 2004;88(4):560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Griffith M, Osborne R, Hunger R, Xiong X, Doillon CJ, Laycock NLC, et al. Functional human corneal equivalents constructed from cell lines. Science. 1999;286(5447):2169–72.

    Article  CAS  PubMed  Google Scholar 

  57. Sygitowicz G, Zapolska-Downar D, Paluch M, Stawarski T, Sieradzki E, Sitkiewicz D. Bovine corneal epithelial primary cultures as an in vitro model for ophthalmic drugs studies. Acta Pol Pharm - Drug Res. 2011;68(5):745–51.

    CAS  Google Scholar 

  58. Sosnová-Netuková M, Kuchynka P, Forrester JV. The suprabasal layer of corneal epithelial cells represents the major barrier site to the passive movement of small molecules and trafficking leukocytes. Br J Ophthalmol. 2007;91(3):372–8.

    Article  PubMed  Google Scholar 

  59. Maurice DM, Mishima S. Ocular pharmacokinetics. In: Sears M, editor. Pharmacology of the eye. Handbook of experimental pharmacology. Berlin Heidelberg: Springer; 1984. p. 19–116.

    Google Scholar 

  60. Sieg JW, Robinson JR. Mechanistic studies on transcorneal permeation of fluorometholone. J Pharm Sci. 1981;70(9):1026–9.

    Article  CAS  PubMed  Google Scholar 

  61. Huhtala A, Mannerström M, Alajuuma P, Nurmi S, Toimela T, Tähti H, et al. Comparison of an immortalized human corneal epithelial cell line and rabbit corneal epithelial cell culture in cytotoxicity testing. J Ocul Pharmacol Ther. 2002;18(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  62. Ouellette MM, McDaniel LD, Wright WE, Shay JW, Schultz RA. The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum Mol Genet. 2000;9(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  63. Neumann AA, Reddel RR. Telomere maintenance and cancer? Look, no telomerase. Nat Rev Cancer. 2002;2(11):879–84.

    Article  CAS  PubMed  Google Scholar 

  64. Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, et al. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci. 1995;36(3):614–21.

    CAS  PubMed  Google Scholar 

  65. Offord EA, Sharif NA, Macé K, Tromvoukis Y, Spillare EA, Avanti O, et al. Immortalized human corneal epithelial cells for ocular toxicity and inflammation studies. Invest Ophthalmol Vis Sci. 1999;40(6):1091–101.

    CAS  PubMed  Google Scholar 

  66. Kahn CR, Young E, Ihn Hwan L, Rhim JS. Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest Ophthalmol Vis Sci. 1993;34(12):3429–41.

    CAS  PubMed  Google Scholar 

  67. Saarinen-Savolainen P, Järvinen T, Araki-Sasaki K, Watanabe H, Urtti A. Evaluation of cytotoxicity of various ophthalmic drugs, eye drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line. Pharm Res. 1998;15(8):1275–80.

    Article  CAS  PubMed  Google Scholar 

  68. Becker U, Ehrhardt C, Schneider M, Muys L, Gross D, Eschmann K, et al. A comparative evaluation of corneal epithelial cell cultures for assessing ocular permeability. Altern Lab Anim. 2008;36(1):33–44.

    CAS  PubMed  Google Scholar 

  69. Muchtar S, Abdulrazik M, Frucht-Pery J, Benita S. Ex-vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea. J Control Release. 1997;44(1):55–64.

    Article  CAS  Google Scholar 

  70. Suhonen P, Jarvinen T, Peura P, Urtti A. Permeability of pilocarpic acid diesters across albino rabbit cornea in vitro. Int J Pharm. 1991;74(2–3):221–8.

    Article  CAS  Google Scholar 

  71. Battaglia L, D’Addino I, Peira E, Trotta M, Gallarate M. Solid lipid nanoparticles prepared by coacervation method as vehicles for ocular cyclosporine. J Drug Deliv Sci Technol. 2012;22(2):125–30.

    Article  CAS  Google Scholar 

  72. Van Der Bijl P, Engelbrecht AH, Van Eyk AD, Meyer D. Comparative permeability of human and rabbit corneas to cyclosporin and tritiated water. J Ocul Pharmacol Ther. 2002;18(5):419–27.

    Article  Google Scholar 

  73. Van Der Bijl P, Van Eyk AD, Seifart HI, Meyer D. In vitro transcorneal penetration of metronidazole and its potential use as adjunct therapy in Acanthamoeba keratitis. Cornea. 2004;23(4):386–9.

    Article  PubMed  Google Scholar 

  74. Chen Y, Lu Y, Zhong Y, Wang Q, Wu W, Gao S. Ocular delivery of cyclosporine A based on glyceryl monooleate/poloxamer 407 liquid crystalline nanoparticles: preparation, characterization, in vitro corneal penetration and ocular irritation. J Drug Target. 2012;20(10):856–63.

    Article  CAS  PubMed  Google Scholar 

  75. Cheeks L, Kaswan RL, Green K. Influence of vehicle and anterior chamber protein concentration on cyclosporine penetration through the isolated rabbit cornea. Curr Eye Res. 1992;11(7):641–9.

    Article  CAS  PubMed  Google Scholar 

  76. Wang W, Sasaki H, Chien D-S, Lee VHL. Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: a comparison with corneal penetration. Curr Eye Res. 1991;10(6):571–9.

    Article  CAS  PubMed  Google Scholar 

  77. Guerra FB, Patane M, Ruiz-Perez B, Sanford T, Bode c, Li J et al. In vitro and in vivo rabbit models of ocular drug absorption. AAPS Poster T2086: EyeGate Pharma, Absorption Systems; 2010.

  78. Jibin Li Z, Patane M, Ruiz-Perez B, Sanford T, Guerra FB, Huang Y et al. In vitro corneal model for prediction of in vivo ocular absorption following topical administration. AAPS2010 poster: EyeGate Pharma, Absorption systems; 2010.

  79. Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine. 2013;8:1921–33.

    PubMed  PubMed Central  Google Scholar 

  80. Yao W, Sun K, Mu H, Liang N, Liu Y, Yao C, et al. Preparation and characterization of puerarin–dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm. 2010;36(9):1027–35.

    Article  CAS  PubMed  Google Scholar 

  81. Yao W-J, Sun K-X, Liu Y, Liang N, Mu H-J, Yao C, et al. Effect of poly(amidoamine) dendrimers on corneal penetration of puerarin. Biol Pharm Bull. 2010;33(8):1371–7.

    Article  CAS  PubMed  Google Scholar 

  82. Dutescu RM, Panfil C, Merkel OM, Schrage N. Semifluorinated alkanes as a liquid drug carrier system for topical ocular drug delivery. Eur J Pharm Biopharm. 2014;88(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  83. Thiel MA, Coster DJ, Standfield SD, Brereton HM, Mavrangelos C, Zola H, et al. Penetration of engineered antibody fragments into the eye. Clin Exp Immunol. 2002;128(1):67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thiel M, Morlet N, Schulz D, Edelhauser H, Dart J, Coster D, et al. A simple corneal perfusion chamber for drug penetration and toxicity studies. Br J Ophthalmol. 2001;85(4):450–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rodriguez-Aller M, Guillarme D, El Sanharawi M, Behar-Cohen F, Veuthey J-L, Gurny R. In vivo distribution and ex vivo permeation of cyclosporine A prodrug aqueous formulations for ocular application. J Control Release. 2013;170(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  86. Üstündağ-Okur N, Gökçe EH, Bozbıyık Dİ, Eğrilmez S, Özer Ö, Ertan G. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci. 2014;63:204–15.

    Article  PubMed  CAS  Google Scholar 

  87. Pescina S, Govoni P, Potenza A, Padula C, Santi P, Nicoli S. Development of a convenient ex vivo model for the study of the transcorneal permeation of drugs: histological and permeability evaluation. J Pharm Sci. 2015;104(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  88. Babiole M, Wilhelm F, Schoch C. In vitro corneal permeation of unoprostone isopropyl (UI) and its metabolism in the isolated pig eye. J Ocul Pharmacol Ther. 2001;17(2):159–72.

    Article  CAS  PubMed  Google Scholar 

  89. Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm. 2013;39(4):508–19.

    Article  CAS  PubMed  Google Scholar 

  90. Dave V, Paliwal S, Yadav S, Sharma S. Effect of in vitro transcorneal approach of aceclofenac eye drops through excised goat, sheep, and buffalo corneas. Sci World J. 2015;2015:7.

    Article  Google Scholar 

  91. Le Bourlais CA, Chevanne F, Turlin B, Acar L, Zia H, Sado PA, et al. Effect of cyclosporine A formulations on bovine corneal absorption: ex-vivo study. J Microencapsul. 1997;14(4):457–67.

    Article  PubMed  Google Scholar 

  92. Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis. 2006;12:1185–98.

    CAS  PubMed  Google Scholar 

  93. Morrison PWJ, Connon CJ, Khutoryanskiy VV. Cyclodextrin-mediated enhancement of riboflavin solubility and corneal permeability. Mol Pharm. 2013;10(2):756–62.

    Article  CAS  PubMed  Google Scholar 

  94. Morrison PWJ, Khutoryanskiy VV. Enhancement in corneal permeability of riboflavin using calcium sequestering compounds. Int J Pharm. 2014;472(1–2):56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Myung D, Derr K, Huie P, Noolandi J, Ta KP, Ta CN. Glucose permeability of human, bovine, and porcine corneas in vitro. Ophthalmic Res. 2006;38(3):158–63.

    Article  CAS  PubMed  Google Scholar 

  96. Hämäläinen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38(3):627–34.

    PubMed  Google Scholar 

  97. Missel P. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 2012;29(12):3251–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ehlers N. Morphology and histochemistry of the corneal epithelium of mammals. Acta Anat (Basel). 1970;75(2):161–98.

    Article  CAS  Google Scholar 

  99. Remington LA. Chapter 2—cornea and sclera. In: Remington LA, editor. Clinical anatomy and physiology of the visual system. 3rd ed. Saint Louis: Butterworth-Heinemann; 2012. p. 10–39.

    Chapter  Google Scholar 

  100. Loch C, Zakelj S, Kristl A, Nagel S, Guthoff R, Weitschies W, et al. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes. Eur J Pharm Sci. 2012;47(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  101. Pawar PK, Majumdar DK. Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas. AAPS PharmSciTech. 2006;7(1):E89–94.

    Article  PubMed Central  Google Scholar 

  102. Evitts D, Olejnik O, Musson D, Bidgood A, inventors; Aqueous ophthalmic microemulsions of tepoxalin EP199103092431992.

  103. Todo H, Oshizaka T, Kadhum WR, Sugibayashi K. Mathematical model to predict skin concentration after topical application of drugs. Pharm. 2013;5(4):634–51.

    Google Scholar 

  104. Particle Sciences, Inc. Development and validation of in vitro release testing method for semisolid formulations. Technical Brief. 2009;10.

  105. Malhotra M, Majumdar DK. Effect of preservative, antioxidant and viscolizing agents on in vitro transcorneal permeation of ketorolac tromethamine. Indian J Exp Biol. 2002;40(5):555–9.

    CAS  PubMed  Google Scholar 

  106. Ahuja M, Sharma SK, Majumdar DK. In vitro corneal permeation of diclofenac from oil drops. Yakugaku Zasshi. 2007;127(10):1739–45.

    Article  CAS  PubMed  Google Scholar 

  107. Dave V, Paliwal S. A novel approach to formulation factor of aceclofenac eye drops efficiency evaluation based on physicochemical characteristics of in vitro and in vivo permeation. Saudi Pharm J. 2014;22(3):240–5.

    Article  PubMed  Google Scholar 

  108. Bonferoni MC, Rossi S, Ferrari F, Caramella C. A modified Franz diffusion cell for simultaneous assessment of drug release and washability of mucoadhesive gels. Pharm Dev Technol. 1999;4(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  109. Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv. 2007;14(8):507–15.

    Article  CAS  PubMed  Google Scholar 

  110. Kawazu K, Midori Y, Shiono H, Ota A. Characterization of the carrier-mediated transport of levofloxacin, a fluoroquinolone antimicrobial agent, in rabbit cornea. J Pharm Pharmacol. 1999;51(7):797–801.

    Article  CAS  PubMed  Google Scholar 

  111. Araie M, Maurice DM. A reevaluation of corneal endothelial permeability to fluorescein. Exp Eye Res. 1985;41(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  112. Chien DS, Tang-Liu DDS, Woodward DF. Ocular penetration and bioconversion of prostaglandin F(2α) prodrugs in rabbit cornea and conjunctiva. J Pharm Sci. 1997;86(10):1180–6.

    Article  CAS  PubMed  Google Scholar 

  113. Musson DG, Bidgood AM, Olejnik O. An in vitro comparison of the permeability of prednisolone, prednisolone sodium phosphate, and prednisolone acetate across the NZW rabbit cornea. J Ocul Pharmacol. 1992;8(2):139–50.

    Article  CAS  PubMed  Google Scholar 

  114. Gratieri T, Gelfuso GM, Thomazini JA, Lopez RFV. Excised porcine cornea integrity evaluation in an in vitro model of iontophoretic ocular research. Ophthalmic Res. 2010;43(4):208–16.

    Article  CAS  PubMed  Google Scholar 

  115. Valls R, García ML, Egea MA, Valls O. Validation of a device for transcorneal drug permeation measure. J Pharm Biomed Anal. 2008;48(3):657–63.

    Article  CAS  PubMed  Google Scholar 

  116. Edelhauser HF, Hoffert JR, Fromm PO. In vitro ion and water movement in corneas of rainbow trout. Invest Ophthalmol. 1965;4:290–6.

    CAS  PubMed  Google Scholar 

  117. Olsen TW, Edelhauser HF, Lim JI, Geroski DH. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36(9):1893–903.

    CAS  PubMed  Google Scholar 

  118. Richman JB, Tang-Liu DDS. A corneal perfusion device for estimating ocular bioavailability in vitro. J Pharm Sci. 1990;79(2):153–7.

    Article  CAS  PubMed  Google Scholar 

  119. Hull DS, Hine JE, Edelhauser HF, Hyndiuk RA. Permeability of the isolated rabbit cornea to corticosteroids. Invest Ophthalmol Vis Sci. 1974;13(6):457–9.

    CAS  Google Scholar 

  120. Madhu C, Rix P, Nguyen T, Chien D-S, Woodward DF, Tang-Liu DD-S, et al. Penetration of natural prostaglandins and their ester prodrugs and analogs across human ocular tissues in vitro. J Ocul Pharmacol Ther. 1998;14(5):389–99.

    Article  CAS  PubMed  Google Scholar 

  121. Nair V, Pillai O, Poduri R, Panchagnula R. Transdermal iontophoresis. Part I: basic principles and considerations. Methods Find Exp Clin Pharmacol. 1999;21(2):139–51.

    Article  CAS  PubMed  Google Scholar 

  122. Abdulrazik M, inventor US5789240 A, assignee. Diffusion cell for ex-vivo pressure-controlled transcorneal drug penetration studies 1996.

  123. Luschmann C, Tessmar J, Schoeberl S, Strau O, Luschmann K, Goepferich A. Self-assembling colloidal system for the ocular administration of cyclosporine A. Cornea. 2014;33(1):77–81.

    Article  PubMed  Google Scholar 

  124. Luschmann C, Tessmar J, Schoeberl S, Strauss O, Framme C, Luschmann K, et al. Developing an in situ nanosuspension: a novel approach towards the efficient administration of poorly soluble drugs at the anterior eye. Eur J Pharm Sci. 2013;50(3–4):385–92.

    Article  CAS  PubMed  Google Scholar 

  125. Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular drug delivery; impact of in vitro cell culture models. J Ophthalmic Vis Res. 2014;4(4):238–52.

    Google Scholar 

  126. Mannermaa E, Vellonen K-S, Ryhänen T, Kokkonen K, Ranta V-P, Kaarniranta K, et al. Efflux protein expression in human retinal pigment epithelium cell lines. Pharm Res. 2009;26(7):1785–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Novaliq GmbH, Germany, for their financial support in the form of a scholarship to Priyanka Agarwal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilva D. Rupenthal.

Ethics declarations

Conflict of interest

The authors are currently consulting for Novaliq GmbH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P., Rupenthal, I.D. In vitro and ex vivo corneal penetration and absorption models. Drug Deliv. and Transl. Res. 6, 634–647 (2016). https://doi.org/10.1007/s13346-015-0275-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0275-6

Keywords

Navigation