Skip to main content
Log in

MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy at a decompensated state eventually leads to heart failure that mostly contributes to deaths globally. Dysregulated cardiac autophagy is a hallmark of a diseased heart, and a close contact between cardiac autophagy and cardiac hypertrophy is emerging. MicroRNAs (miRNAs) have been recently reported to be prominently implicated in cardiac hypertrophy through regulating cardiac autophagy. However, the role and function of miR302–367 clusters in cardiac autophagy and cardiac hypertrophy remain largely masked. Therefore, to investigate the performance of miR302–367 in cardiac hypertrophy, the specific in vitro hypertrophic model was established in H9c2 cells upon Ang II treatment. Consequently, we discovered a distinct inhibition on autophagy and a remarkable upregulation of miR302–367 expression in hypertrophic H9c2 cells. Besides, loss- and gain-of-function assays demonstrated miR302–367 inhibited autophagy and then aggravated cardiac hypertrophy. Mechanically, PTEN was predicted and confirmed as the shared target of miR302–367. Further, we recognized the apparent inactivation of PI3K/AKT/mTORC1 signaling in the face of miR302–367 suppression in Ang II-induced hypertrophic H9c2 cells. Moreover, co-treatment of PTEN inhibitor re-activated the PI3K/AKT/mTORC1 pathway, therefore counteracting the pro-autophagic and anti-hypertrophic effects of miR302–367 depletion on cardiomyocytes. These findings unveiled the pivotal role of the miR302–367 cluster in regulating cardiac autophagy and therefore modulating cardiac hypertrophy through PTEN/PI3K/AKT/mTORC1 signaling, indicating a promising therapeutic strategy for cardiac hypertrophy and even heart failure.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anversa P, Leri A, Kajstura J (2006) Cardiac regeneration. J Am Coll Cardiol 47:1769–1776

    Article  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  Google Scholar 

  • Cai N, Wang Y-D, Zheng P-S (2013) The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target AKT1. RNA (New York, NY) 19:85–95

    Article  CAS  Google Scholar 

  • Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  • da Costa Martins Paula A, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto Yigal M, Molkentin Jeffery D, De Windt LJ (2008) Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118:1567–1576

    Article  Google Scholar 

  • Denton D, Xu T, Kumar S (2015) Autophagy as a pro-death pathway. Immunol Cell Biol 93:35–42

    Article  CAS  Google Scholar 

  • Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F, de la Forest Divonne S, Paquis P, Preynat-Seauve O, Krause KH, Chneiweiss H, Virolle T (2012) The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ 19:232–244

    Article  CAS  Google Scholar 

  • Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development (Cambridge, England) 143:729–740

    Article  CAS  Google Scholar 

  • Gao Z, Zhu X, Dou Y (2015) The miR-302/367 cluster: a comprehensive update on its evolution and functions. Open Biol 5

    Article  Google Scholar 

  • Gottlieb RA, Mentzer RM (2010) Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol 72:45–59

    Article  CAS  Google Scholar 

  • Guo Y, Cui J, Ji Z, Cheng C, Zhang K, Zhang C, Chu M, Zhao Q, Yu Z, Zhang Y, Fang YX, Gao WQ, Zhu HH (2017) miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene 36:6336–6347. https://doi.org/10.1038/onc.2017.240

    Article  CAS  PubMed  Google Scholar 

  • Gurha P (2016) MicroRNAs in cardiovascular disease. Curr Opin Cardiol. https://doi.org/10.1097/hco.0000000000000280

    Article  Google Scholar 

  • Harvey PA, Leinwand LA (2011) Cellular mechanisms of cardiomyopathy. J Cell Biol 194:355–365

    Article  CAS  Google Scholar 

  • Heggermont WA, Papageorgiou AP, Quaegebeur A, Deckx S, Carai P, Verhesen W, Eelen G, Schoors S, van Leeuwen R, Alekseev S, Elzenaar I, Vinckier S, Pokreisz P, Walravens AS, Gijsbers R, Van Den Haute C, Nickel AG, Schroen B, van Bilsen M, Janssens S, Maack C, Pinto YM, Carmeliet P, Heymans S (2017) Inhibition of microRNA-146A and overexpression of its target dihydrolipoyl succinyltransferase protect against pressure-overload induced cardiac hypertrophy and dysfunction. Circulation. https://doi.org/10.1161/circulationaha.116.024171

    Article  CAS  Google Scholar 

  • Huang J, Sun W, Huang H, Ye J, Pan W, Zhong Y, Cheng C, You X, Liu B, Xiong L, Liu S (2014) miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS One 9:e94382

    Article  Google Scholar 

  • Lavandero S, Chiong M, Rothermel BA, Hill JA (2015) Autophagy in cardiovascular biology. J Clin Invest 125:55–64

    Article  Google Scholar 

  • Li HH, Lin SL, Huang CN, Lu FJ, Chiu PY, Huang WN, Lai TJ, Lin CL (2016) miR-302 attenuates amyloid-beta-induced neurotoxicity through activation of Akt signaling. J Alzheimers Dis 50:1083–1098

  • Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638

    Article  CAS  Google Scholar 

  • Li Z, Song Y, Liu L, Hou N, An X, Zhan D, Li Y, Zhou L, Li P, Yu L, Xia J, Zhang Y, Wang J, Yang X (2015) miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ 24:1205–1213. https://doi.org/10.1038/cdd.2015.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CC, Chang YM, Pan CT, Chen CC, Ling L, Tsao KC, Yang RB, Li WH (2014) Functional evolution of cardiac microRNAs in heart development and functions. Mol Biol Evol 31:2722–2734

    Article  CAS  Google Scholar 

  • Mann DL (2007) MicroRNAs and the failing heart. N Engl J Med 7(4):502

    Google Scholar 

  • Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624

    Article  CAS  Google Scholar 

  • Pi J, Liu J, Zhuang T, Zhang L, Sun H, Chen X, Zhao Q, Kuang Y, Peng S, Zhou X, Yu Z, Tao T, Tomlinson B, Chan P, Tian Y, Fan H, Liu Z, Zheng X, Morrisey E, Zhang Y (2018) Elevated expression of miR302-367 in endothelial cells inhibits developmental angiogenesis via CDC42/CCND1 mediated signaling pathways. Theranostics 8:1511–1526

    Article  CAS  Google Scholar 

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    Article  CAS  Google Scholar 

  • Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, Cowart LA (2012) Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest 122:3919–3930

    Article  CAS  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414

    Article  CAS  Google Scholar 

  • Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114:549–564

    Article  CAS  Google Scholar 

  • Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B, Sadoshima J (2016) Drp1-Dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133:1249–1263

    Article  CAS  Google Scholar 

  • Sui X, Kong N, Wang X, Fang Y, Hu X, Xu Y, Chen W, Wang K, Li D, Jin W, Lou F, Zheng Y, Hu H, Gong L, Zhou X, Pan H, Han W (2014) JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep 4:4694–4694

    Article  Google Scholar 

  • Tao L, Bei Y, Zhou Y, Xiao J, Li X (2015) Non-coding RNAs in cardiac regeneration. Oncotarget. https://doi.org/10.18632/oncotarget.6073

  • Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR (2015) Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 89:1401–1438

    Article  CAS  Google Scholar 

  • Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7:279ra238

    Article  Google Scholar 

  • Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078

    Article  Google Scholar 

  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a MicroRNA. Science 316:575–579

    Article  Google Scholar 

  • Wu H, Wang Y, Wang X, Li R, Yin D (2017) MicroRNA-365 accelerates cardiac hypertrophy by inhibiting autophagy via the modulation of Skp2 expression. Biochem Biophys Res Commun 484:304–310

    Article  CAS  Google Scholar 

  • Yan L, Guo N, Cao Y, Zeng S, Wang J, Lv F, Wang Y, Cao X (2018) miRNA-145 inhibits myocardial infarction-induced apoptosis through autophagy via Akt3/mTOR signaling pathway in vitro and in vivo. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3748

  • Yang CM, Chiba T, Brill B, Delis N, von Manstein V, Vafaizadeh V, Oellerich T, Groner B (2015a) Expression of the miR-302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes. Int J Cancer 137:2296–2309

    Article  CAS  Google Scholar 

  • Yang SL, Yang M, Herrlinger S, Liang C, Lai F, Chen JF (2015c) MiR-302/367 regulate neural progenitor proliferation, differentiation timing, and survival in neurulation. Dev Biol. https://doi.org/10.1016/j.ydbio.2015.09.020

    Article  CAS  Google Scholar 

  • Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J, Sayed D, Shirakabe A, Matsushima S, Park Y, Tian B, Abdellatif M, Sadoshima J (2015b) miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res 117:891–904

    Article  CAS  Google Scholar 

  • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946

    Article  CAS  Google Scholar 

  • Zhang H, Zhang X, Zhang J (2018) MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3K/AKT/mTOR signaling pathway by targeting ATG14. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2018.10.085

    Article  CAS  Google Scholar 

  • Zhang Z, Xiang D, Heriyanto F, Gao Y, Qian Z, Wu WS (2013) Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Rep 1:218–225

    Article  CAS  Google Scholar 

  • Zhou L, Ma B, Han X (2016) The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. J Mol Endocrinol 57:R143–r152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to all those who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Piao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary Figure 1

Enhanced expression of miR302–367 on the autophagic and hypertrophic phenotypes in H9c2 cells. (A-B) qRT-PCR analysis of miR302–367 cluster (A) and autophagy-related genes (B) in H9c2 cells. (C) Western blot analysis of autophagy-related proteins in H9c2 cells under miR302–367 mimics. (D) Images of autophagosomes in indicated H9c2 cells were obtained under electron microscopy (Olympus). (E) The levels of hypertrophic markers in H9c2 cells with or without miR302–367 upregulation were evaluated via qRT-PCR. (F) IF staining of the surface area of H9c2 cells under miR302–367 upregulation. **P < 0.01. (PNG 688 kb)

High resolution image (TIF 7603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Zhou, Y., Han, L. et al. MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy. In Vitro Cell.Dev.Biol.-Animal 56, 112–119 (2020). https://doi.org/10.1007/s11626-019-00417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00417-5

Keywords

Navigation