Skip to main content
Log in

MicroRNA-17-5p Promotes Cardiac Hypertrophy by Targeting Mfn2 to Inhibit Autophagy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Pathological cardiac hypertrophy is the leading cause of heart failure, and miRNAs have been recognized as key factors in cardiac hypertrophy. This study aimed to elucidate whether miR-17-5p affects cardiac hypertrophy by targeting the mitochondrial fusion protein mitofusin 2 (Mfn2)-mediated phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and regulating autophagy. miR-17-5p expression was shown to be upregulated both in vivo and in vitro. In addition, a miR-17-5p inhibitor significantly reversed AngII-induced cell hypertrophy in neonatal rat left ventricle myocytes (NRVMs). In contrast to miR-17-5p expression, Mfn2 expression was inhibited in rat hearts at 4 weeks after transverse aortic constriction (TAC) and in an Ang II-induced cell hypertrophy model. We examined miR-17-5p targeting of Mfn2 by dual luciferase reporter and Western blot assays. In addition, we also verified the relationship between Mfn2 and the PI3K/AKT/mTOR pathway. Mfn2 overexpression attenuated miR-17-5p-induced cell hypertrophy, and in rat myocardial tissue, miR-17-5p induced autophagy inhibition. In summary, the results of the present study demonstrated that miR-17-5p inhibits Mfn2 expression, activates the PI3K/AKT/mTOR pathway and suppresses autophagy to promote cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shimizu, I., & Minamino, T. (2016). Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 97, 245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, L., Wu, D., Sang, M., Xu, Y., Liu, Z., & Wu, Q. (2017). Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats. International Immunopharmacology, 48, 102–109. https://doi.org/10.1016/j.intimp.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Xie, Y. P., Lai, S., Lin, Q. Y., Xie, X., Liao, J. W., Wang, H. X., et al. (2018). CDC20 regulates cardiac hypertrophy via targeting LC3-dependent autophagy. Theranostics, 8(21), 5995–6007. https://doi.org/10.7150/thno.27706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sciarretta, S., Forte, M., Frati, G., & Sadoshima, J. (2018). New insights into the role of mTOR signaling in the cardiovascular system. Circulation Research, 122(3), 489–505. https://doi.org/10.1161/circresaha.117.311147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oka, T., Akazawa, H., Naito, A. T., & Komuro, I. (2014). Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circulation Research, 114(3), 565–571. https://doi.org/10.1161/CIRCRESAHA.114.300507

    Article  CAS  PubMed  Google Scholar 

  6. Liesa, M., & Shirihai, O. S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metabolism, 17(4), 491–506. https://doi.org/10.1016/j.cmet.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Brito, O. M., & Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 456(7222), 605–610. https://doi.org/10.1038/nature07534

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, T., Huang, X., Han, L., Wang, X., Cheng, H., Zhao, Y., et al. (2012). Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. Journal of Biological Chemistry, 287(28), 23615–23625. https://doi.org/10.1074/jbc.M112.379164

    Article  CAS  Google Scholar 

  9. Fang, X., Chen, X., Zhong, G., Chen, Q., & Hu, C. (2016). Mitofusin 2 downregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PI3K/Akt and mitochondrial apoptosis pathways. Journal of Cardiovascular Pharmacology, 67(2), 164–174. https://doi.org/10.1097/fjc.0000000000000333

    Article  CAS  PubMed  Google Scholar 

  10. Aoyagi, T., & Matsui, T. (2011). Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Current Pharmaceutical Design, 17(18), 1818–1824. https://doi.org/10.2174/138161211796390976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hall, A. R., Burke, N., Dongworth, R. K., Kalkhoran, S. B., Dyson, A., Vicencio, J. M., et al. (2016). Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death and Disease, 7, e2238. https://doi.org/10.1038/cddis.2016.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, H., Guo, Y., Mi, L., Wang, X., Li, L., & Gao, W. (2011). Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. Journal of Cardiovascular Pharmacology and Therapeutics, 16(2), 205–211. https://doi.org/10.1177/1074248410385683

    Article  CAS  PubMed  Google Scholar 

  13. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, J., Liew, O. W., Richards, A. M., & Chen, Y. T. (2016). Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms17050749

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shi, J. Y., Chen, C., Xu, X., & Lu, Q. (2019). miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiology (Oxford), 227(2), e13323. https://doi.org/10.1111/apha.13323

    Article  CAS  Google Scholar 

  16. Du, W., Pan, Z., Chen, X., Wang, L., Zhang, Y., Li, S., et al. (2014). By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion. Cellular Physiology and Biochemistry, 34(3), 955–965. https://doi.org/10.1159/000366312

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X., Xiao, J., Zhu, H., Wei, X., Platt, C., Damilano, F., et al. (2015). miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metabalism, 21(4), 584–595. https://doi.org/10.1016/j.cmet.2015.02.014

    Article  CAS  Google Scholar 

  18. Huo, J. Y., Jiang, W. Y., Geng, J., Chen, C., Zhu, L., Chen, R., et al. (2019). Renal denervation attenuates pressure overload-induced cardiac remodelling in rats with biphasic regulation of autophagy. Acta Physiology (Oxford), 226(4), e13272. https://doi.org/10.1111/apha.13272

    Article  CAS  Google Scholar 

  19. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445–544. https://doi.org/10.4161/auto.19496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H., Acevedo Arozena, A., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12(1), 1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xue, R., Zhu, X., Jia, L., Wu, J., Yang, J., Zhu, Y., et al. (2019). Mitofusin2, a rising star in acute-on-chronic liver failure, triggers macroautophagy via the mTOR signalling pathway. Journal of Cellular and Molecular Medicine, 23(11), 7810–7818. https://doi.org/10.1111/jcmm.14658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue, R., Meng, Q., Lu, D., Liu, X., Wang, Y., & Hao, J. (2018). Mitofusin2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Oxidative Medicine and Cellular Longevity, 2018, 2798070. https://doi.org/10.1155/2018/2798070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stefely, J. A., Zhang, Y., Freiberger, E. C., Kwiecien, N. W., Thomas, H. E., Davis, A. M., et al. (2020). Mass spectrometry proteomics reveals a function for mammalian CALCOCO1 in MTOR-regulated selective autophagy. Autophagy. https://doi.org/10.1080/15548627.2020.1719746

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mellis, D., & Caporali, A. (2018). MicroRNA-based therapeutics in cardiovascular disease: Screening and delivery to the target. Biochemical Society Transactions, 46(1), 11–21. https://doi.org/10.1042/BST20170037

    Article  CAS  PubMed  Google Scholar 

  25. Sivakumar, A., Subbiah, R., Balakrishnan, R., & Rajendhran, J. (2017). Cardiac mitochondrial dynamics: MiR-mediated regulation during cardiac injury. Journal of Molecular and Cellular Cardiology, 110, 26–34. https://doi.org/10.1016/j.yjmcc.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Samidurai, A., Roh, S. K., Prakash, M., Durrant, D., Salloum, F. N., Kukreja, R. C., et al. (2019). STAT3-miR-17/20 signaling axis plays a critical role in attenuating myocardial infarction following rapamycin treatment in diabetic mice. Cardiovascular Research. https://doi.org/10.1093/cvr/cvz315

    Article  PubMed Central  Google Scholar 

  27. Du, W. W., Li, X., Li, T., Li, H., Khorshidi, A., Liu, F., et al. (2015). The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. Journal of Cell Sciences, 128(2), 293–304. https://doi.org/10.1242/jcs.158360

    Article  CAS  Google Scholar 

  28. Mendell, J. T. (2008). miRiad Roles for the miR-17-92 cluster in development and disease. Cell, 133(2), 217–222. https://doi.org/10.1016/j.cell.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, S. H., Guo, J., Wu, J., Sun, Z., Han, M., Shan, S. W., et al. (2013). miR-17 targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling. FASEB Journal, 27(10), 4254–4265. https://doi.org/10.1096/fj.13-231688

    Article  CAS  PubMed  Google Scholar 

  30. Xue, S., Liu, D., Zhu, W., Su, Z., Zhang, L., Zhou, C., et al. (2019). Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction. Frontiers in Physiology, 10, 123. https://doi.org/10.3389/fphys.2019.00123

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang, L., Ellims, A. H., Moore, X. L., White, D. A., Taylor, A. J., Chin-Dusting, J., et al. (2015). Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. Journal of Translational Medicine, 13, 314. https://doi.org/10.1186/s12967-015-0672-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qin, W., Zhang, Y. B. H., Deng, B. L., Liu, J., Zhang, H. L., & Jin, Z. L. (2019). MiR-17-5p modulates mitochondrial function of the genioglossus muscle satellite cells through targeting Mfn2 in hypoxia. Journal of Biological Regulators and Homeostatic Agents, 33(3), 753–761.

    CAS  PubMed  Google Scholar 

  33. Shen, T., Zheng, M., Cao, C., Chen, C., Tang, J., Zhang, W., et al. (2007). Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. Journal of Biological Chemistry, 282(32), 23354–23361. https://doi.org/10.1074/jbc.M702657200

    Article  CAS  Google Scholar 

  34. Guan, X., Wang, L., Liu, Z., Guo, X., Jiang, Y., Lu, Y., et al. (2016). miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. Journal of Molecular and Cellular Cardiology, 99, 207–217. https://doi.org/10.1016/j.yjmcc.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  35. Song, M., Franco, A., Fleischer, J. A., Zhang, L., & Dorn, G. W., 2nd. (2017). Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metabolism, 26(6), 872-883.e875. https://doi.org/10.1016/j.cmet.2017.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiong, W., Ma, Z., An, D., Liu, Z., Cai, W., Bai, Y., et al. (2019). Mitofusin 2 participates in mitophagy and mitochondrial fusion against angiotensin II-induced cardiomyocyte injury. Frontiers in Physiology, 10, 411. https://doi.org/10.3389/fphys.2019.00411

    Article  PubMed  PubMed Central  Google Scholar 

  37. Delbridge, L. M. D., Mellor, K. M., Taylor, D. J., & Gottlieb, R. A. (2017). Myocardial stress and autophagy: Mechanisms and potential therapies. Nature Reviews Cardiology, 14(7), 412–425. https://doi.org/10.1038/nrcardio.2017.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Z., Wang, J., & Yang, X. (2015). Functions of autophagy in pathological cardiac hypertrophy. International Journal of Biological Sciences, 11(6), 672–678. https://doi.org/10.7150/ijbs.11883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Six Talent Peaks Project in Jiangsu Province, China (No. 2016-WSN-103) and the Nantong Science and Technology Bureau, China (No. JC2018082; MS22018005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Lu or Chu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The study was approved by the Ethics Committee of Nantong University.

Additional information

Handling Editor: Rajiv Janardhanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xuan Xu and Yi-ling Su contributed equally to this work.

Reporting Checklist: The authors have completed the ARRIVE reporting checklist.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Su, Yl., Shi, Jy. et al. MicroRNA-17-5p Promotes Cardiac Hypertrophy by Targeting Mfn2 to Inhibit Autophagy. Cardiovasc Toxicol 21, 759–771 (2021). https://doi.org/10.1007/s12012-021-09667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09667-w

Keywords

Navigation