Skip to main content

Advertisement

Log in

Identification of key genes fluctuated induced by avian leukemia virus (ALV-J) infection in chicken cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Avian leukemia subgroup J (ALV-J) is one of the most detrimental neoplastic diseases in poultry production. However, the differences between somatic cells and immune cells post-infection remain poorly understood. The aim of our study was to detect the different responses in chicken to infection with ALV-J in different cell lines. In this study, we detected transcriptome expression changes during infection with ALV-J in chicken embryo fibroblast (CEF) and HD11 cell lines. RNA-Seq was used to determine the expression levels of mRNA transcripts from the two cell types after infection with ALV-J at 1, 4, and 7 dpi, and gene ontology analyses were used to cluster differentially expressed genes into pathways. Quantitative real-time PCR confirmed the expression of 336 and 269 differentially expressed genes in CEF and HD11 lines, respectively, involved in innate immunity (OASL, CCL4), adaptive immunity (LYZ, CD72), apoptosis and autophagy (WISP2, COMP), inflammation (JSC, IL8), and tumorgenesis (PCNA, GPX3). The notable signal transduction pathways included the PPARs signaling pathway and ECM-receptor interactions in CEF, and the Toll-like receptor, NOD-like receptor, and RIG-I-like receptor signaling pathways in HD11. To our knowledge, this is the first study to use high-throughput sequencing methods to investigate viral infection in different cell types. The results of the present study form a foundation for developing potential biological markers for viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  • Banerjee S, Dhar G, Haque I, Kambhampati S, Mehta S, Sengupta K et al (2008) CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 68(18):7606–7612

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7(4):452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beug H, von Kirchbach A, Döderlein G, Conscience J-F, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18(2):375–390

    Article  CAS  PubMed  Google Scholar 

  • Borodina T, Adjaye J, Sultan M (2011) A strand-specific library preparation protocol for RNA sequencing. In: Daniel Jameson MV, Hans VW (eds) Methods in enzymology. Volume 500. Academic, Waltham, pp 79–98

    Google Scholar 

  • Bosinger SE, Hosiawa KA, Cameron MJ, Persad D, Ran L, Xu L et al (2004) Gene expression profiling of host response in models of acute HIV infection. J Immunol 173(11):6858–6863

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brune K, Leffell MS, Spitznagel JK (1972) Microbicidal activity of peroxidaseless chicken heterophile leukocytes. Infect Immun 5(3):283–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11(3):297–305

    Article  CAS  PubMed  Google Scholar 

  • Burnside J, Ouyang M, Anderson A, Bernberg E (2008) Deep sequencing of chicken microRNAs. BMC Genomics 9:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2(12):1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Sun S, Zhang Z, Meng S (2009) Simultaneous endemic infections with subgroup J avian leukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens. Avian Pathol 38:443–448

    Article  PubMed  Google Scholar 

  • Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759

    Article  CAS  PubMed  Google Scholar 

  • Diebold S (2010) Innate recognition of viruses. Immunol Lett 128:17–20

    Article  CAS  PubMed  Google Scholar 

  • El-kott AF, El-baz MA, Mokhtar AA (2006) Proliferating cell nuclear antigen (PCNA) overexpression and microvessel density predict survival in the urinary bladder carcinoma. Int Urol Nephrol 38:237–242

    Article  CAS  PubMed  Google Scholar 

  • Fadly AM, Smith EJ (1999) Isolation and some characteristics of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in the United States. Avian Dis:391–400

  • Feng S-Z, Cao W-S, Liao M (2011) The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses. J Gen Virol 92(Pt 7):1688–1697

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–30

    Article  CAS  PubMed  Google Scholar 

  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7(12):1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Hang B, Sang J, Qin A, Qian K, Shao H, Mei M et al (2014) Transcription analysis of the response of chicken bursa of Fabricius to avian leukosis virus subgroup J strain JS09GY3. Virus Res 188:8–14

    Article  CAS  PubMed  Google Scholar 

  • Hansson GK, Libby P, Schönbeck U, Yan ZQ (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291

    Article  CAS  PubMed  Google Scholar 

  • Hattori K, Uchida K, Akaza H, Koiso K (1995) Proliferating cell nuclear antigen cyclin in human transitional cell carcinoma. Br J Urol 75:162–166

    Article  CAS  PubMed  Google Scholar 

  • Heide V (1998) Update on subgroup J of avian leukosis. World Poult 14:2

    Google Scholar 

  • Hussain AI, Johnson JA, da Silva FM, Heneine W (2003) Identification and characterization of avian retroviruses in chicken embryo-derived yellow fever vaccines: investigation of transmission to vaccine recipients. J Virol 77(2):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano A, Haruyama T, Akaike T, Watanabe Y (1999) IRF-1 is an essential mediator in IFN-γ-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochem Biophys Res Commun 257:672–677

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26(4):493–500

    Article  PubMed  Google Scholar 

  • Li H, Ji J, Xie Q, Shang H, Zhang H, Xin X et al (2012) Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus. Virus Res 169(1):268–271

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang T, Xu C, Wang D, Ren J, Li Y et al (2015) Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. BMC Genomics 16(1):763

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Cao W, Li Y, Feng M, Wu X, Yu K et al (2013) Subgroup J avian leukosis virus infection inhibits autophagy in DF-1 cells. Virol J 10:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Ong S-E, Badu-Nkansah K, Schindler J, White FM, Hynes RO (2011) CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci 108(4):1379–1384

  • Liu H-C, Niikura M, Fulton J, Cheng H (2004) Identification of chicken lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek’s disease resistance gene via a virus-host protein interaction screen. Cytogenet Genome Res 102(1–4):304–308

    Google Scholar 

  • Loo YM, Gale M (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Janeway CA (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies [mdash] the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through β-catenin. Science 296(5573):1644–1646

    Article  CAS  PubMed  Google Scholar 

  • Moresco EMY, LaVine D, Beutler B (2011) Toll-like receptors. Curr Biol 21(13):R488–RR93

    Article  CAS  PubMed  Google Scholar 

  • Patan S (2004) Vasculogenesis and angiogenesis. Angiogenesis in brain tumors. Springer, New York, pp 3–32

    Book  Google Scholar 

  • Payne LN (1998) HPRS 103: a retro virus strikes back. The emergence of subgroup J avian leukosis virus. Avian Pathol 27(S1):S36–S45

    Article  Google Scholar 

  • Payne LN, Nair V (2012) The long view: 40 years of avian leukosis research. Avian Pathol 41(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Gao Y, Ni W, Sun M, Wang Y, Yin C et al (2013) Development and application of real-time PCR for detection of subgroup J avian leukosis virus. J Clin Microbiol 51(1):149–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell level. Science 307(5717):1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Roukos DH (2010) Next-generation, genome sequencing-based biomarkers: concerns and challenges for medical practice. Biomark Med 4(4):583–586

    Article  PubMed  Google Scholar 

  • Rubin H, Fanshier L, Cornelius A, Hughes WF (1962) Tolerance and immunity in chickens after congenital and contact infection with an avian leukosis virus. Virology 17(1):143–156

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schwarting R, Castello R (1992) Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias. Am J Hematol 41:151–158

    Article  CAS  PubMed  Google Scholar 

  • Sugiarto H, Yu PL (2004) Avian antimicrobial peptides: the defense role of β-defensins. Biochem Biophys Res Commun 323:721–727

    Article  CAS  PubMed  Google Scholar 

  • The Gene Ontology Consortium (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32(suppl 1):D258–D261

    Article  Google Scholar 

  • Thomas PD, Mi H, Lewis S (2007) Ontology annotation: mapping genomic regions to biological function. Curr Opin Chem Biol 11(1):4–11

    Article  CAS  PubMed  Google Scholar 

  • Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76(1):16–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics (Oxford, England) 25(9):1105–1111

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported financially by the National Natural Science Foundation of China (31301966) and Science & Technology Pillar Program of Jiangsu (BE2013392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Chang.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Fig. S1

(PDF 118 kb)

Fig. S2

(PDF 136 kb)

Fig. S3

(PDF 204 kb)

Fig. S4

(PDF 186 kb)

Table S1

(PDF 263 kb)

Table S2

(PDF 272 kb)

Table S3

(PDF 206 kb)

Table S4

(XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Li, Z., Su, S. et al. Identification of key genes fluctuated induced by avian leukemia virus (ALV-J) infection in chicken cells. In Vitro Cell.Dev.Biol.-Animal 54, 41–51 (2018). https://doi.org/10.1007/s11626-017-0198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-017-0198-2

Keywords

Navigation