Skip to main content
Log in

Differentiation of human CD146-positive endometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and glial-like cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the potential differentiation of CD146+ endometrial stem cells to several lineages. Endometrial stromal cells were cultured using Dulbecco’s modified Eagle’s medium/Hams F-12 (DMEM/F-12) and were passaged every 7–10 d when cultures reached 80–100% of confluency. The immunophenotypes of single endometrial cells were analyzed using flow cytometry at fourth passage. Then the CD146+ cells were sorted using magnetic-activated cell sorting, and they were cultured and analyzed for in vitro differentiation to several lineages. Detection of adipocyte- and osteocyte-like cells were assessed by oil red O and alizarin red staining, respectively. For detection of neural progenitor and oligodendrocyte-like cells, the cells were immunostained by neurofilament 68 and oligo2, respectively. The rates of CD90, CD105, CD146, CD31, CD34, and CD9 of cultured endometrial cells were 94.98 ± 3%, 95.77 ± 2.5%, 27.61 ± 2%, 0.79 ± 0.05%, 1.43 ± 0.1%, and 1.01 ± 0.06%, respectively. CD146+ cells were isolated to high purity. CD146+-differentiated cells to adipogenic cell with typical lipid-rich vacuoles and osteogenic cells were observed and confirmed their mesenchymal origin. They also differentiated into neural progenitor and glial differentiation by retinoic acid, basic fibroblast growth factor, and epidermal growth factor signaling molecules, respectively, and confirmed by neurofilament 68 and oligo2 immunocytochemistry. The efficiency of differentiation to neural progenitor and oligodendrocyte-like cells was 90 ± 3.4% and 79 ± 2.8%, respectively. This study showed that CD146+ cells from human endometrium after in vitro cultivation can differentiate into adipogenic-, osteogenic-, neural progenitor-, and glial-like cells. They may provide available alternative source of stem cells for future cell-based therapies and tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Ai J, Shahverdi AR, Barough SE, Kouchesfehani HM, Heidari S, Roozafzoon R, Verdi J, Khoshzaban A (2012) Derivation of adipocytes from human endometrial stem cells (EnSCs). J Reprod Infertil 13:151–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K (2009) Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells 27:2744–2752

    Article  CAS  PubMed  Google Scholar 

  • Bockeria L, Bogin V, Bockeria O, Le T, Alekyan B, Woods EJ, Brown AA, Ichim TE, Patel AN (2013) Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J Transl Med 11:56

    Article  PubMed Central  PubMed  Google Scholar 

  • Cervelló I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martínez-Conejero JA, Galán A, Martínez-Romero A, Martínez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simón C (2010) Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One 5:e10964

    Article  PubMed Central  PubMed  Google Scholar 

  • Cervelló I, Mirantes C, Santamaria X, Dolcet X, Matias-Guiu X, Simón C (2011) Stem cells in human endometrium and endometrial carcinoma. Int J Gynecol Pathol 30:317–327

    Article  PubMed  Google Scholar 

  • Chan RW, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, Zlatkov V, Kehayov I, Kyurkchiev S (2008) Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction 135:551–558

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Barough S, Kouchesfehani HM, Ai J, Mahmoodinia M, Tavakol S, Massumi M (2013a) Programming of human endometrial-derived stromal cells (EnSCs) into pre-oligodendrocyte cells by overexpression of miR-219. Neurosci Lett 537:65–70

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Barough S, Kouchesfahani HM, Ai J, Massumi M (2013b) Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci 51:265–273

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE, Chan RW, Schwab KE (2007) Endometrial stem cells. Curr Opin Obstet Gynecol 19:377–383

    Article  PubMed  Google Scholar 

  • Gargett CE, Chan RW, Schwab KE (2008) Hormone and growth factor signaling in endometrial renewal: role of stem/progenitor cells. Mol Cell Endocrinol 288:22–29

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80:1136–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatori M, Shimozawa N, Yasmin L, Suemori H, Nakatsuji N, Ogura A, Yagami K, Sankai T (2014) Role of retinoic acid and fibroblast growth factor 2 in neural differentiation from cynomolgus monkey (macaca fascicularis) embryonic stem cells. Comp Med 64:140–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kao AP, Wang KH, Chang CC, Lee JN, Long CY, Chen HS, Tsai CF, Hsieh TH, Tsai EM (2011) Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril 95:1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N (2007) Characterization of side-population cells in human normal endometrium. Hum Reprod 22:1214–1223

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Anwar SS, Bühring HJ, Rao JR, Gargett CE (2012) A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant 21:2201–2214

    Article  PubMed  Google Scholar 

  • Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, Oda H, Uchida H, Asada H, Ito M, Yoshimura Y, Maruyama T, Okano H (2010) Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One 5:e10387

    Article  PubMed Central  PubMed  Google Scholar 

  • Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thébaud B, Riordan NH (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SM, Ghanbari Z, Javidan AN, Mortazavi-Tabatabaei SA, Massumi M (2010) Barough SE (2012) Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep 19:e00015

    Google Scholar 

  • Noureddini M, Verdi J, Mortazavi-Tabatabaei SA, Sharif S, Azimi A, Keyhanvar P, Shoae-Hassani A (2012) Human endometrial stem cell neurogenesis in response to NGF and bFGF. Cell Biol Int 36:961–966

    Article  CAS  PubMed  Google Scholar 

  • Schwab KE, Chan RW, Gargett CE (2005) Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril 84:1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 22:2903–2911

    Article  CAS  PubMed  Google Scholar 

  • Schwab KE, Hutchinson P, Gargett CE (2008) Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod 23:934–943

    Article  CAS  PubMed  Google Scholar 

  • Shoae-Hassani A, Sharif S, Seifalian AM, Mortazavi-Tabatabaei SA, Rezaie S, Verdi J (2013) Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women. BJU Int 112:854–863

    Article  CAS  PubMed  Google Scholar 

  • Ulrich D, Muralitharan R, Gargett CE (2013) Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 13:1387–1400

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jin P, Sabatino M, Ren J, Civini S, Bogin V, Ichim TE, Stroncek DF (2012) Comparison of endometrial regenerative cells and bone marrow stromal cells. J Transl Med 10:207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS (2011) Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med 15:747–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolff EF, Wolff AB, Hongling D, Taylor HS (2007) Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci 14:524–533

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Wang W, Li X (2014) In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell Dev Biol Anim 50:162–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Tarbiat Modares University as Ph.D thesis and Iranian stem cell network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojdeh Salehnia.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayazi, M., Salehnia, M. & Ziaei, S. Differentiation of human CD146-positive endometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and glial-like cells. In Vitro Cell.Dev.Biol.-Animal 51, 408–414 (2015). https://doi.org/10.1007/s11626-014-9842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9842-2

Keywords

Navigation