Skip to main content
Log in

Rapid assessment of the toxicity of oil sands process-affected waters using fish cell lines

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Rapid and reliable toxicity assessment of oil sands process-affected waters (OSPW) is needed to support oil sands reclamation projects. Conventional toxicity tests using whole animals are relatively slow, costly, and often subjective, while at the same time requiring the sacrifice of test organisms as is the case with lethal dosage/concentration assays. A nonlethal alternative, using fish cell lines, has been developed for its potential use in supporting oil sands reclamation planning and to help predict the viability of aquatic reclamation models such as end-pit lakes. This study employed six fish cell lines (WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHML, FHMT) in 24 h viability assays for rapid fluorometric assessment of cellular integrity and functionality. Forty-nine test water samples collected from the surface of oil sands developments in the Athabasca Oil Sands deposit, north of Fort McMurray, Alberta, Canada, were evaluated in blind. Small subsample volumes (8 ml) were mixed with 2 ml of 5× concentrated exposure media and used for direct cell exposures. All cell line responses in terms of viability as measured by Alamar blue assay, correlated well with the naphthenic acids (NA) content in the samples (R 2 between 0.4519 and 0.6171; p < 0.0001) when data comparisons were performed after the bioassays. NA or total acid-extractable organics group has been shown to be responsible for most of the acute toxicity of OSPW and our results further corroborate this. The multifish cell line bioassay provides a strong degree of reproducibility among tested cell lines and good relative sensitivity of the cell line bioassay as compared to available in vivo data that could lead to cost effective, high-throughput screening assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Allen E. W. Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J. Environ. Eng. Sci. 7: 123–138; 2008.

    Article  CAS  Google Scholar 

  • Bols N. C.; Barlian A.; Chirino-Trejo M.; Caldwell S. J.; Goegan P.; Lee L. E. J. Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills. J. Fish Dis. 17: 601–611; 1994.

    Article  Google Scholar 

  • Bols N. C.; Dayeh V. R.; Lee L. E. J.; Schirmer K. Use of fish cells in the toxicology and ecotoxicology of fish. Biochemistry and molecular biology of fishes, vol. 6. Elsevier Science, Amsterdam, pp 43–84; 2005.

    Google Scholar 

  • Bols N. C.; Lee L. E. J. Cell lines: availability, propagation and isolation. In: Hochachka P. W.; Mommsen T. P. (eds) Biochemistry and molecular biology of fishes, vol. 3. Elsevier Science, Amsterdam, pp 145–149; 1994.

    Google Scholar 

  • Castaño A.; Bols N. C.; Braunbeck T.; Dierickx P.; Halder M.; Isomaa B.; Kawahara K.; Lee L. E. J.; Mothersill C.; Part P.; Repetto G.; Sintes J. R.; Rufli H.; Smith R.; Wood C.; Segner H. The use of fish cells in ecotoxicology. The report and recommendations of ECVAM workshop 47. ATLA Altern. Lab. Anim. 31: 317–351; 2003.

    Google Scholar 

  • Clemente J. S.; Fedorak P. M. A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60: 585–600; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dayeh V. R.; Grominsky S.; DeWitte-Orr S. J.; Sotornik D.; Yeung C. R.; Lee L. E. J.; Lynn D. H.; Bols N. C. Comparing a ciliate and a fish cell line for their sensitivity to several classes of toxicants by the novel application of multiwall filter plates to Tetrahymena. Res. Microbiol. 156: 93–103; 2005a.

    Article  PubMed  CAS  Google Scholar 

  • Dayeh V. R.; Schirmer K.; Bols N. C. Applying whole-water samples directly to fish cell cultures in order to evaluate the toxicity of industrial effluent. Water Res. 36: 3727–3738; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dayeh V. R.; Schirmer K.; Lee L. E. J.; Bols N. C. Rainbow trout gill cell line microplate cytotoxicity test. In: Blaise C.; Ferard J. F. (eds) Toxicity test methods: small-scale freshwater toxicity investigations, vol. 1. Springer, Dordrecht, pp 473–503; 2005b.

    Chapter  Google Scholar 

  • Dokholyan B. K.; Magomedov A. K. Effect of sodium naphthenate on survival and some physiological-biochemical parameters of some fishes. J. Ichthyol. 23: 125–132; 1983.

    Google Scholar 

  • Dorn P. B. Case histories—the petroleum industry. In: Ford D. L. (ed) Toxicity reduction: valuation and control. Water quality management library, vol. 3. Technomic, Lancaster, pp 183–223; 1992.

    Google Scholar 

  • Dyer S.; Moorhouse J.; Laufenberg K.; Powell R. Undermining the environment: the oil sands report card. The Pembina Institute/WWF-Canada January 2008. 72pp http://www.strategywest.com/downloads/Undermining200801.pdf.

  • Energy Resources Conservation Board. ST98-2012: Alberta’s energy reserves 2011 and supply/demand outlook 2012–2021. http://www.ercb.ca/sts/ST98/ST98-2012.pdf.

  • Frank R. A.; Kavanagh R.; Burnison B. K.; Arsenault G.; Headley J. V.; Peru K. M.; Van der Kraak G. V.; Solomon K. R. Toxicity assessment of collected fractions from an extracted naphthenic acid mixture. Chemosphere 72: 1309–1314; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Frank R. A.; Kavanagh R.; Burnison B. K.; Headley J. V.; Peru K. M.; Van Der Kraak G. V.; Solomon K. R. Diethylaminoethyl-cellulose clean-up of a large volume naphthenic acid extract. Chemosphere 64: 1346–1352; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Gagne F.; Douville M.; Andre C.; Debenest T.; Talbot A.; Sherry J.; Hewitt L. M.; Frank R. A.; McMaster M. E.; Parrott J.; Bickerton G. Differential changes in gene expression in rainbow trout hepatocytes exposed to extracts of oil sands process-affected water and the Athabasca River. Comp. Biochem. Physiol. C 155: 551–559; 2012.

    CAS  Google Scholar 

  • Garcia-Garcia E.; Pun J.; Perez-Estrada L. A.; Din M. G.; Smith D. W.; Martin J. W.; Belosevic M. Commercial naphthenic acids and the organic fraction of oil sands process water downregulate proinflammatory gene expression and macrophage antimicrobial responses. Toxicol. Lett. 203: 62–73; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Glawdel T.; Elbuken C.; Lee L. E. J.; Ren C. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)—towards water toxicity testing. Lab Chip 9: 3243–3250; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow W. L.; Ausley L. W.; Burton D. T.; Denton D. L.; Dorn P. B.; Grothe D. R.; Heber M. A.; Norberg-King T. J.; Rogers Jr. J. H. Major ion toxicity in effluents: a review with permitting recommendations. Environ. Toxicol. Chem. 19: 175–182; 2000.

    Article  CAS  Google Scholar 

  • Grewer D.; Rozlyn F.; Young R.; Whittal R.; Fedorak P. Naphthenic acids and other acid extractables in water samples from Alberta: what is being measured? Sci. Total. Environ. 408: 5997–6010; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Han X.; MacKinnon M. D.; Martin J. W. Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS. Chemosphere 76: 63–70; 2009.

    Article  PubMed  CAS  Google Scholar 

  • He Y.; Wiseman S. B.; Zhang X.; Hecker M.; Jones P. D.; El-Din M. G.; Martin J. W.; Giesy J. P. Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295R cell line. Chemosphere 80: 578–584; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Headley J. V.; McMartin D. A review of the occurrence and fate of naphthenic acids in aquatic environments. Environ. Sci. Health A 39: 1989–2010; 2004.

    Google Scholar 

  • Holowenko F. M.; MacKinnon M. D.; Fedorak P. M. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography–mass spectrometry. Water Res. 36: 2843–2855; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Holroyd P.; Simieritsch T. In: Fauth L. (ed) The water that binds us. The Pembina Institute, Drayton Valley; 2009. 49pp.

    Google Scholar 

  • Hrovat M.; Segner H.; Jeram S. Variability of in vivo fish acute toxicity data. Regul. Toxicol. Pharmacol. 54: 294–300; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova N. V.; Zemlak T. S.; Hanner R. H.; Hebert P. D. N. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7: 544–548; 2007.

    Article  CAS  Google Scholar 

  • Jivraj M.; MacKinnon M. D.; Fung B. Naphthenic acid extraction and quantitative analysis with FT-IR Spectroscopy. In: Syncrude analytical manuals, 4th ed. Syncrude Canada Ltd., Edmonton AB, 12pp; 1995.

  • Johnson E. A.; Miyanishi K. Creating new landscapes and ecosystems—the Alberta oil sands. Ann. NY Acad. Sci. 1134: 120–145; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kannel P. R.; Gan T. Y. Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environmentts: a review. J. Environ. Sci. Health A 47: 1–21; 2012.

    CAS  Google Scholar 

  • Kavanagh R. J.; Frank R. A.; Burnison B. K.; Young R. F.; Fedorak P. M.; MacKinnon M. D.; Solomon K. R.; Van Der Kraak G. V. Fathead minnow (Pimephales promelas) reproduction is impaired when exposed to a naphthenic acid extract. Aquat. Toxicol. 116–117: 34–42; 2012.

    Article  PubMed  Google Scholar 

  • Kavanagh R. J.; Frank R. A.; Oakes K. D.; Servos M. R.; Young R. F.; Fedorak P. M.; MacKinnon M. D.; Solomon K. R.; Dixon D. G.; Van Der Kraak G. V. Fathead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters. Aquat. Toxicol. 101: 214–220; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kelly E.; Schindler D.; Hodson P.; Short J.; Radmanovich R.; Nielsen C. Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proc. Natl. Acad. Sci. 107: 16178–16183; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Lee L. E. J.; Bufalino M. R.; Christie A. E.; Frischer M. E.; Soin T.; Tsui C. K. M.; Hanner R. H.; Smagghe G. Misidentification of OLGA-PH-J/92, believed to be the only crustacean cell line. In Vitro Cell. Dev. Biol. – Anim. 47: 665–674; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Lee L. E. J.; Caldwell S. J.; Gibbons J. Development of a cell line from skin of goldfish, Carassius auratus, and effects of ascorbic acid on collagen deposition. Histochem. J. 29: 31–43; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lee L. E. J.; Clemons J. H.; Bechtel D. G.; Caldwell S. J.; Han K. B.; Pasitschniak-Arts M.; Mosser D. D.; Bols N. C. Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol. Toxicol. 9: 279–294; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Lee L. E. J.; Dayeh V.; Schirmer K.; Bols N. C. Fish cell lines as rapid and inexpensive screening tools for whole effluent testing. Integr. Environ. Assess. Manag. 4: 372–374; 2008.

    Article  PubMed  Google Scholar 

  • Lee L. E. J.; Vo N.; Werner J.; Weil R.; Denslow N. D.; Law R. D. Development of a liver cell line from fathead minnow, Pimephales promelas, and their molecular and biochemical characterisation. In Vitro Cell Dev. Biol.—Anim. 45(Suppl 1): A-2020; 2009.

    Google Scholar 

  • Lemphers N.; Dyer S.; Grant J. In: Lines R. (ed) Toxic liability: how Albertans could end up paying for oil sands mine reclamation. Report 2075. The Pembina Institute, Drayton Valley; 2010. 58pp.

    Google Scholar 

  • Leung S. S.; MacKinnon M. D.; Smith R. E. H. Aquatic reclamation in the Athabasca, Canada, oil sands: naphthenate and salt effects on phytoplankton communities. Environ. Toxicol. Chem. 20: 1532–1543; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Leung S. S.; MacKinnon M. D.; Smith R. E. H. The ecological effects of naphthenic acids and salts on phytoplankton from the Athabasca oil sands region. Aquat. Toxicol. 62: 11–26; 2003.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon M. D.; Boerger H. Description of two treatment methods for detoxifying oil sands tailings pond water. Water. Pollut. Res. J. Can. 21: 496–512; 1986.

    CAS  Google Scholar 

  • Magwood S.; George S. In vitro alternatives to whole animal testing. Comparative cytotoxicity studies of divalent metals in established cell lines derived from tropical and temperate water fish species in a neutral red assay. Mar. Environ. Res. 42: 37–40; 1996.

    Article  CAS  Google Scholar 

  • Mikula R. J.; Kasperski K. L.; Burns R.; MacKinnon M. D. The nature and fate of oil sands fine tailings. In: Schramm L. L. (ed) Suspensions: fundamentals and applications in the petroleum industry, vol. 251. ACS, Washington, D.C., pp 677–723; 1996.

    Chapter  Google Scholar 

  • Mount D. R.; Gulley J. M.; Hockett J. R.; Garrison T. D.; Evans J. M. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna, and fathead minnows (Pimephales promelas). Environ. Toxicol. Chem. 16: 2009–2019; 1997.

    CAS  Google Scholar 

  • Nero V.; Farwell A.; Lee L. E. J.; Van Meer T.; MacKinnon M. D.; Dixon D. G. The effects of salinity on naphthenic acid toxicity to yellow perch: gill and liver histopathology. Ecotoxicol. Environ. Saf. 65: 252–264; 2006.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor S.; McNamara L.; Swerdin M.; Van Buskirk R. G. Multifluorescent assays reveal mechanisms underlying cytotoxicity—phase I. CFTA compounds. In Vitro Toxicol. 4: 197–206; 1991.

    Google Scholar 

  • OECD. Organization for Economic Cooperation and Development Guideline for Testing of Chemicals. Test No. 203: Fish, Acute Toxicity Test, pp 1–3; 1992.

  • OECD. OECD Test Guideline 401 was deleted in 2002: A major step in animal welfare: OECD reached agreement on the abolishment of the LD50 acute toxicity test. http://www.oecd.org/env/chemicalsafetyandbiosafety/testingofchemicals/oecdtestguideline401wasdeletedin2002amajorstepinanimalwelfareoecdreachedagreementontheabolishmentoftheld50acutetoxicitytest.htm; 2002.

  • OECD. Fish testing framework. Series on testing and assessment. No 171. http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=ENV/JM/MONO(2012)16&doclanguage=en; 2012.

  • Peters L. E.; MacKinnon M. D.; Van Meer T.; van den Heuvel M. R.; Dixon D. G. Effects of oil sands process-affected waters and naphthenic acids on yellow perch (Perca flavescens) and Japanese medaka (Orizias latipes) embryonic development. Chemosphere 67: 2177–2183; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rogers V.; Wickstrom M.; Liber K.; MacKinnon M. Acute and subchronic mammalian toxicity of naphthenic acids from oil sands tailings. Toxicol. Sci. 66: 347–355; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Saito H.; Koyasu T.; Shigeoka T.; Tomita I. Cytotoxicity of chlorophenols to goldfish GFS cells with the MTT and the LDH assays. Toxicol. In Vitro 8: 1107–1112; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer K. Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224: 163–183; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer K.; Chan A. G. J.; Greenberg B. M.; Dixon D. G.; Bols N. C. Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol. In Vitro 11: 107–119; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer K.; Ganassin R. C.; Brubacher J. L.; Bols N. C. A DNA fluorometric assay for measuring fish cell proliferation in microplates with different well sizes. J. Tissue Cult. Methods 16: 133–142; 1994.

    Article  Google Scholar 

  • Schirmer K.; Tanneberger K.; Kramer N. I.; Volker D.; Scholz S.; Hafner C.; Lee L. E. J.; Bols N. C.; Hermens J. L. M. Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests. Aquat. Toxicol. 90: 128–137; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Schramm L. L.; Stasiuk E. N.; MacKinnon M. D. Surfactants in Athabasca oil sands slurry conditioning, flotation recovery, and tailings processes. In: Schramm L. L. (ed) Surfactants: fundamentals and applications in the petroleum industry. Cambridge University Press, Cambridge, pp 365–430; 2000.

    Chapter  Google Scholar 

  • Scott A. C.; MacKinnon M. D.; Fedorak P. M. Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids. Environ. Sci. Technol. 39: 8388–8394; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Scott W. B.; Crossman E. J. Freshwater fishes of Canada. Fisheries Research Board of Canada Bulletin 184, Ottawa; 1973.

  • Segner H. Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish. ATLA Altern. Lab. Anim. 32: 375–382; 2004.

    CAS  Google Scholar 

  • Tollefsen K. E.; Blikstad C.; Eikvar S.; Finne E. F.; Gregersen I. K. Cytotoxicity of alkylphenols and alkylated non-phenolics in a primary culture of rainbow trout (Onchorhynchus mykiss) hepatocytes. Ecotoxicol. Environ. Saf. 69: 64–73; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Tollefsen K. E.; Petersen K.; Rowland S. J. Toxicity of synthetic naphthenic acids and mixtures of these to fish liver cells. Environ. Sci. Technol. 46: 5143–5150; 2012.

    Article  PubMed  CAS  Google Scholar 

  • US EPA. Short methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Fourth edition. EPA-821-R-02-013. United States Environmental Protection Agency. Washington, DC. 335pp.; 2002.

  • van den Heuvel M. R.; Power M.; MacKinnon M. D.; Dixon D. G. Effects of oil sands related aquatic reclamation on yellow perch (P. flavescens). II. Chemical and biochemical indicators of exposure to oil sands related waters. Can. J. Fish. Aquat. Sci. 56: 1226–1233; 1999.

    Google Scholar 

  • Vo N. T. K.; Sansom B.; Kozlowski E.; Bloch S.; Lee L. E. J. Development of a permanent cell line derived from fathead minnow testis and their applications in environmental toxicology. MDIBL Bull. 49: 83–86; 2010.

    Google Scholar 

  • Waymouth C. Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6: 109–127; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Wilensky C. S.; Bowser P. R. Growth characteristics of the WF-2 cell cultures. J. World Aquacult. Soc. 36: 538–541; 2005.

    Article  Google Scholar 

  • Winton J.; Batts W.; DeKinkelin P.; Leberre M.; Bremont M.; Fijan N. Current lineages of the epithelioma papulosum cyprini (EPC) cell line are contaminated with fathead minnow, Pimephales promelas, cells. J. Fish Dis. 33: 701–704; 2010.

    Google Scholar 

  • Wolf K.; Mann J. A. Poikilotherm vertebrate cell lines and viruses: a current listing for fishes. In Vitro 16: 168–179; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Wort D. J.; Patel K. M. Response of plants to naphthenic and cycloalkanecarboxylic acids. Agron. J. 62: 644–646; 1970.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was generously supported by grants to LEJL from the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Water Network, Cumulative Environmental Management Association (CEMA), and the European Chemical Council (CEFIC-LRI). The support of Syncrude Canada Ltd. for sample collection and analysis, as well as providing permission for publication of this study, is appreciated. BS was the recipient of an Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy E. J. Lee.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansom, B., Vo, N.T.K., Kavanagh, R. et al. Rapid assessment of the toxicity of oil sands process-affected waters using fish cell lines. In Vitro Cell.Dev.Biol.-Animal 49, 52–65 (2013). https://doi.org/10.1007/s11626-012-9570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9570-4

Keywords

Navigation