Skip to main content
Log in

Tissue-engineered fetal dermal matrices

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In the early to mid-gestation fetus, skin wounds heal with no scar formation and perfect restoration of dermal architecture. This phenomenon is intrinsic to fetal skin. The intrinsic phenotypic properties of the fetal fibroblast are believed to be “the effector of scarless repair”. We sought to prepare dermal matrices with high similarity to the mid-gestation fetal dermis using the technology of “self-assembly” with fetal dermal cells of 18, 20, and 22 wk gestation. Comparison of these dermal constructs to those prepared with neonatal dermal cells, adult skin, neonatal foreskin, and mid-gestation fetal skin demonstrates that these fetal dermal matrices bear marked morphological and biochemical resemblance to the mid-gestation fetal dermis. In order to shed further light on the genes involved in scarless wound healing, we conducted a differential gene array analysis of the neonatal and fetal dermal matrices. Using a gene chip (GLYCOv4 gene chip) of approximately 1,260 human genes, we observed differential expression of 67 genes. A number of fibrotic genes were observed to be downregulated and anti-fibrotic genes upregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Abdel-Malak N. A.; Srikant C. B.; Kristof A. S.; Magder S. A.; Di Batista J. A.; Hussain S. N. Angiopoietin-1 promotes endothelial cell proliferation and migration through AP-1 dependent autocrine production of IL-8. Blood 111: 4145–4154; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Beanes S. R.; Dang C.; Soo C.; Wang Y.; Urata M.; Ting K.; Fonkalsrud E. W.; Benhaim P.; Hedrick M. H.; Atkinson J. B.; Lorenz H. P. Down regulation of decorin, a transforming growth factor modulator, is associated with scarless fetal wound healing. J. Pediatr. Surg. 36: 1666–1671; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y.; Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57: 289–300; 1995.

    Google Scholar 

  • Bolstad B. M.; Irizarry R. A.; Astrand M.; Speed T. P. A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19: 185–193; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Brown S.; Worsfold M.; Sharp C. Microplate assay for the measurement of hydroxyproline in acid-hydrolyzed tissue samples. Biotechniques 30: 38–42; 2001.

    PubMed  CAS  Google Scholar 

  • Buchanan E. P.; Longaker M. P.; Lorenz H. P. Fetal skin wound healing. Adv. Clin. Chem. 48: 138–161; 2009.

    Google Scholar 

  • Bussolino F.; Di Renzo M. F.; Ziche M.; Bocchietto E.; Olivero M.; Naldini L.; Gaudino G.; Tamagnone L.; Coffer A.; Comoglio P. M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119: 629–641; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Calabro A.; Benavides M.; Tammi M.; Hascall V. C.; Midura R. J. Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore assisted carbohydrate electrophoresis (FACE). Glycobiology 10: 273–281; 2001.

    Article  Google Scholar 

  • Calabro A.; Hascall V. C.; Midura R. J. Adaptation of FACE methodology for microanalysis of total hyaluronan in chondroitin sulfate composition from cartilage. Glycobiology 10: 283–293; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Danielson K. G.; Baribault H.; Holmes D. F.; Graham H.; Kadler K. E. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136: 729–743; 1997.

    Article  PubMed  CAS  Google Scholar 

  • De Cat B.; David G. Developmental roles of the glypicans. Cell Develop. Biol. 12: 117–125; 2001.

    Article  Google Scholar 

  • Ellis I.; Banyard J.; Schor S. L. Differential response of fetal and adult fibroblasts to cytokines: cell migration and hyaluronan synthesis. Development 124: 1593–1600; 1997.

    PubMed  CAS  Google Scholar 

  • Fosang A. J.; Hey N. J.; Carney S. L.; Hardingham T. E. An ELISA plate-based assay for hyaluronan using biotinylated proteoglycan G1 domain. Matrix 10: 306–313; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hantash B. M.; Longmei Z.; Knowles J. A.; Lorenz H. P. Adult and fetal wound healing. Front. Biosci. 13: 51–61; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry R. A.; Bolstad B. M.; Collin F.; Cope L. M.; Hobbs B.; Speed T. P. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31: e15; 2003.

    Article  PubMed  Google Scholar 

  • Kinsella M. G.; Bressler S. L.; Wight T. N. The regulated synthesis of decorin, versican and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit. Rev. Eukaryot. Gene Expr. 14: 203–234; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Larson B. J.; Longaker M. T.; Lorenz H. P. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126: 1172–1180; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz H. P.; Lin R. Y.; Longaker M. T.; Whitby D. J.; Adzick N. S. The fetal fibroblast: the effector cell of scarless fetal skin repair. Plast. Reconstr. Surg. 96: 1260–1261; 1995.

    Article  Google Scholar 

  • Moulin V.; Tam B. Y.; Castilloux G.; Auger F. A.; O’Connor-Mccourt A.; Germain L. Fetal and adult human skin fibroblasts display intrinsic differences in contractile capacity. J. Cell. Physiol. 188: 211–222; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nedeau A. E. A CXCl5 and bFGF dependent effect of PDGF-B activated fibroblasts in promoting trafficking and differentiation of bone marrow derived mesenchymal stem cells. Exp. Cell Res. 314: 2176–2186; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pouyani T.; Ronfard V.; Scott P. G.; Dodd C. M.; Ahmed A.; Gallo R.; Parenteau N. De novo synthesis of human dermis in vitro in the absence of a three-dimensional scaffold. In Vitro Cell Dev. Biol.-Anim. 45: 430–441; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ramelet A. A.; Hirt-Burri N.; Raffoul W.; Scaletta C.; Pioletti D. P.; Offord E.; Mansourian R.; Applegate L. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp. Gerontol. 44: 208–218; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Rho S. S.; Choi H. J.; Min J. K.; Lee H. W.; Park H.; Park H.; Kim Y. N.; Kwon Y. G. CLEC14A is specifically expressed in endothelial cells and mediates cell to cell adhesion. Biochem. Biophys. Res. Commun. 404: 103–108; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Russell K. S.; Stern D. F.; Polverini P. J.; Bender J. R. Neuregulin activation of ErbB receptors in vascular endothelium leads to angionenesis. Am. J. Physiol. Heart Circ. Physiol. 227: H2205–H2211; 1999.

    Google Scholar 

  • Smyth, G. K. Linear models and empirical Bayes methods for assessing Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Molec. Biol. 3(1); 2004. doi:10.2202/1544-6115.1027.

  • Soo C.; Hu F. Y.; Zhang X.; Wang Y.; Beanses H. R.; Lorenz H. P.; Hedrick M. H.; Mackool R. J.; Plaas A.; Kim S. J.; Longaker M. T.; Freymiller E.; Ting K. Differential expression of fibromodulin, a TGF-β modulator, in fetal skin development and scarless repair. Am. J. Path. 157: 423–433; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sorrell M. J.; Carrino D. A.; Baber M. A.; Caplan A. I. Versican in human fetal skin development. Anat. Embryol. 199: 45–56; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sureshbabu A.; Okajima H.; Yamanaka D.; Shastri S.; Tonner E.; Rae C.; Szymanowska M.; Shand J. H.; Takahashi S.; Beattie J.; Allan G. J.; Flint D. J. IGFBP-5 induces epithelial and fibroblast responses consistent with the fibrotic response. Biochem. Soc. Trans. 37: 882–885; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Svenson L.; Aszodi A.; Reinholdt F. P.; Fassler R.; Heinegard D.; Oldberg A. Fibromodulin null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 247: 9636–9647; 1999.

    Article  Google Scholar 

  • Tonnesen M. C.; Feng X.; Clark R. A. Angiogenesis in wound healing. J. Invest. Dermatol. 5: 40–46; 2000.

    Article  CAS  Google Scholar 

  • Uutela M.; Wirzenius M.; Paavonen K.; Rajantie I.; He Y.; Karpanen T.; Lohela M.; Wiig H.; Salven P.; Pajusola K.; Eriksson U.; Alitalo K. PDGFD induces macrophage recruitment, increased interstitial pressure and blood vessel maturation during angiogenesis. Blood 104: 3198–3204; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Werner S.; Peters K. G.; Longaker M. T.; Fuller-Pace F.; Banda M. J.; Williams L. T. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc. Natl. Acad. Sci. 89: 6896–6900; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wight T. N. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 14: 617–623; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann D. R.; Dours-Zimmermann M. T.; Schubert M.; Bruckner-Tuderman L. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J. Cell Biol. 124: 817–825; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maria Ericsson and Louise Trakimas (Harvard Medical School) for their valuable assistance with transmission electron microscopy. We are grateful to Gilberto Hernandez (Scripps Research Institute) for his assistance with RNA analysis. This research was supported by a grant from the Charles H. Hood Foundation to TP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Pouyani.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouyani, T., Papp, S. & Schaffer, L. Tissue-engineered fetal dermal matrices. In Vitro Cell.Dev.Biol.-Animal 48, 493–506 (2012). https://doi.org/10.1007/s11626-012-9541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9541-9

Keywords

Navigation