Skip to main content

Advertisement

Log in

De novo synthesis of human dermis in vitro in the absence of a three-dimensional scaffold

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Neonatal human dermal fibroblasts cultured in vitro synthesize an organized and physically substantial three-dimensional extracellular matrix, without the addition of exogenous matrix components or synthetic scaffolds. De novo matrix synthesis proceeds in an orderly manner over a 21-d culture period and beyond. Analysis of the fibroblast phenotype, i.e., matrix synthesis by the fibroblasts, suggests that both serum and serum-free conditions are conducive to the production of a human tissue-engineered “dermal equivalent”. We report that given the appropriate permissive environment, the fibroblasts establish and grow a tissue in vitro, which bears striking biochemical and physical resemblance to normal human dermis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Auger F. A.; Pouliot R.; Tremblay N.; Guignard R.; Noel P.; Juhasz J.; Germain L.; Goulet F. Multistep production of bioengineered skin substitutes: sequential modulation of culture conditions. In Vitro Cell. Dev. Biol.-Animal 36: 96–103; 2000 doi:10.1290/1071-2690(2000)036<0096:MPOBSS>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Babu M.; Diegelmann R.; Oliver N. Fibronectin is overproduced by keloid fibroblasts during abnormal wound healing. Mol. Cell. Biol. 9: 1642–1650; 1989.

    PubMed  CAS  Google Scholar 

  • Bailey A. J.; Sims T. J.; Le Lous M.; Bazin S. Collagen polymorphism in experimental granulation tissue. Biochem. Biophys. Res. Commun. 66: 1160–1165; 1975 doi:10.1016/0006-291X(75)90480-5.

    Article  PubMed  CAS  Google Scholar 

  • Bell E.; Ehrlich H. P.; Buttle D. J.; Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211: 1052–1054; 1981 doi:10.1126/science.7008197.

    Article  PubMed  CAS  Google Scholar 

  • Black A. F.; Bouez C.; Perrier E.; Schlotmann K.; Chapuis F.; Damour O. Optimization and characterization of an engineered human skin equivalent. Tissue Eng. 11: 723–733; 2005 doi:10.1089/ten.2005.11.723.

    Article  PubMed  CAS  Google Scholar 

  • Boyce S. T.; Christianson D. J.; Hansbrough J. F. Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J. Biomed. Mater. Research 22: 939–957; 1988 doi:10.1002/jbm.820221008.

    Article  CAS  Google Scholar 

  • Bradford Rockwell W.; Cohen K.; Ehrlich P. H. Keloids and hypertrophic scars: a comprehensive review. Plast. Reconstr. Surg. 84: 827–837; 1998.

    Google Scholar 

  • Calabro A.; Benavides M.; Tammi M.; Hascall V. C.; Midura R. J. Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore assisted carbohydrate electrophoresis (FACE). Glycobiology 10: 273–281; 2000a doi:10.1093/glycob/10.3.273.

    Article  PubMed  CAS  Google Scholar 

  • Calabro A.; Hascall V. C.; Midura R. J. Adaptation of FACE methodology for microanalysis of total hyaluronan in chondroitin sulfate composition from cartilage. Glycobiology 10: 283–293; 2000b doi:10.1093/glycob/10.3.283.

    Article  PubMed  CAS  Google Scholar 

  • Chen W. Y. J.; Abatangelo G. Functions of hyaluronan in wound repair. Wound Rep. Reg. 7: 79–89; 1999 doi:10.1046/j.1524-475X.1999.00079.x.

    Article  CAS  Google Scholar 

  • Colwell A. S.; Longaker M. T.; Lorenz H. P. Mammalian fetal organ regeneration. Adv. Biochem. Eng. Biotechnol. 93: 83–100; 2005.

    PubMed  CAS  Google Scholar 

  • Contard P.; Jacobs L.; Perslish J. S.; Fleischmajer R. Collagen fibrillogenesis in a three-dimensional fibroblast culture system. Cell Tissue Res. 273: 571–575; 1993 doi:10.1007/BF00333710.

    Article  PubMed  CAS  Google Scholar 

  • Danielson K. G.; Baribault H.; Holmes D. F.; Graham H.; Kadler K. E. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136: 729–743; 1997 doi:10.1083/jcb.136.3.729.

    Article  PubMed  CAS  Google Scholar 

  • David-Raoudi M.; Tranchepain F.; Deschrevel B.; Vincent J. C.; Bogdanowicz P.; Boumediene K.; Pujol Differential effects of hyaluronan and its fragments on fibroblasts: Relation to wound healing. Wound Repair Regen. 16: 274–287; 2008.

    Article  PubMed  Google Scholar 

  • Falanga V. et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch. Dermatol. 134: 293–300; 1998 doi:10.1001/archderm.134.3.293.

    Article  PubMed  CAS  Google Scholar 

  • Fleischmajer R.; Perslish J. S.; Burgeson R. E.; Shaikh-Bahai F.; Timpl R. Type I and type III collagen interactions during fibrillogenesis. Ann. N. Y. Acad. Sci. 580: 161–175; 1990 doi:10.1111/j.1749-6632.1990.tb17927.x.

    Article  PubMed  CAS  Google Scholar 

  • Fosang A. J.; Hey N. J.; Carney S. L.; Hardingham T. E. An ELISA plate-based assay for hyaluronan using biotinylated proteoglycan G1 domain. Matrix 10: 306–313; 1990.

    PubMed  CAS  Google Scholar 

  • Germain L.; Auger F. A.; Grandbois E.; Guignard R.; Giasson M.; Boisjoly H.; Guerin S. L. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67: 140–147; 1999 doi:10.1159/000028064.

    Article  PubMed  CAS  Google Scholar 

  • Gallo R. L.; Bernfield M. Proteoglycans in Wound Repair. In: ClarkR.A.F. (ed) The molecular and cellular biology of wound repair. Plenum Press, NY, pp 475–492; 1996.

    Google Scholar 

  • Hakkinen L.; Hildebrand H. C.; Berndt A.; Kosmehl H.; Larjava H. Immunolocalization of tenascin-c, α9 integrin subunit and αVβ6 integrin during wound healing in human oral mucosa. J. Histochem. Cytochem. 48: 985–998; 2000.

    PubMed  CAS  Google Scholar 

  • Hantash B. M.; Zhao L.; Knowles J. A. Adult and fetal wound healing. Front. Biosci. 13: 51–61; 2008 doi:10.2741/2559.

    Article  PubMed  CAS  Google Scholar 

  • Hata R.; Senoo H. L-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissuelike substance by skin fibroblasts. J. Cell. Physiol. 138: 8–16; 1989 doi:10.1002/jcp.1041380103.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa O.; Kondo A.; Okada K.; Miyachi Y.; Furumura M. Morphological and biochemical analyses on fibroblasts and self-produced collagens in a novel three-dimensional culture. Br. J. Dermatol. 136: 6–11; 1997 doi:10.1111/j.1365-2133.1997.tb08738.x.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685; 1970 doi:10.1038/227680a0.

    Article  PubMed  CAS  Google Scholar 

  • Levenberg S.; Langer R. Advances in tissue engineering. Curr. Top. Dev. Biol. 61: 113–134; 2004 doi:10.1016/S0070-2153(04)61005-2.

    Article  PubMed  CAS  Google Scholar 

  • L’Heureux N.; Paquet S.; Labbe R.; Germain L.; Auger F. A completely biological tissue-engineered human blood vessel. FASEB J. 12: 47–56; 1998.

    PubMed  Google Scholar 

  • Mackie E. J.; Tucker R. P. The tenascin-c knockout revisited. J. Cell Sci. 112: 3847–3853; 1999.

    PubMed  CAS  Google Scholar 

  • Mast B. A.; Diegelmann R. F.; Krummel T. M.; Cohen I. K. Scarless wound healing in the mammalian fetus. Surgery 174: 441–451; 1992.

    CAS  Google Scholar 

  • Michel M.; L’Heureux N.; Pouliot R.; Xu W.; Auger F. A.; Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell. Dev. Biol.-Animal 35: 318–326; 1999 doi:10.1007/s11626-999-0081-x.

    Article  CAS  Google Scholar 

  • Mooney D. J.; Mikos A. G. Growing new organs. Sci. Am. 113: 60–65; 1999.

    Google Scholar 

  • Parenteau N. Skin: the first tissue engineered products. Sci. Am. 280: 83–84; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Parenteau N. L.; Hardin-Young J.; Ross R. N. Skin SubstitutesPrinciples of Tissue Engineering. Elsevier, San Diego, CA, pp 879–889; 2000.

    Chapter  Google Scholar 

  • Pittenger M. F. et al. Multilineage potential of human mesenchymal stem cells. Science 284: 143–147; 1999 doi:10.1126/science.284.5411.143.

    Article  PubMed  CAS  Google Scholar 

  • Ragan P. M. et al. Down-regulation of chondrocyte agreccan and type II collagen gene expression correlates with increases in static compression magnitude and duration. J. Orthop. Res. 6: 836–842; 1999 doi:10.1002/jor.1100170608.

    Article  Google Scholar 

  • Sakai L. Y.; Keene D. R.; Engvall E. Fibrillin, a new 350-kD glycoprotein is a component of extracellular microfibrils. J. Cell. Biol. 103: 2499–2509; 1986 doi:10.1083/jcb.103.6.2499.

    Article  PubMed  CAS  Google Scholar 

  • Scott P. G.; Dodd C. M.; Ghahary A.; Shen Y. J.; Tredget E. E. Fibroblasts from post burn hypertrophic scar tissue synthesize less decorin than normal dermal fibroblasts. Clin. Sci. 94: 541–547; 1998.

    PubMed  CAS  Google Scholar 

  • Scott P. G.; Dodd C. M.; Tredget E. E.; Ghahary A.; Rahemtulla F. Chemical characterization and quantification of proteoglycans in human post-burn hypertrophic and mature scars. Clin. Sci. 90: 417–425; 1996.

    PubMed  CAS  Google Scholar 

  • Siebert J. W.; Andrew B. R.; McCarthy J. G.; Weinzweig J.; Ehrlich H. P. Fetal wound healing: a biochemical study of scarless healing. Plast. Reconstr. Surg. 85: 495–504; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Smith L. T.; Holbrook K. A.; Madri J. A. Collagen types I, III, and V in human embryonic and fetal skin. Am. J. Anat. 175: 507–521; 1986 doi:10.1002/aja.1001750409.

    Article  PubMed  CAS  Google Scholar 

  • Taylor K. R.; Gallo R. L. Glycosaminoglycans and their proteoglycans: host associated molecular patterns for initiation and modulation of inflammation. 20: 9–22; 2006.

  • West D. C.; Hampson I. N.; Arnold F.; Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science 228: 1324–1326; 1985 doi:10.1126/science.2408340.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins L. M.; Watson S. R.; Prosky S. J.; Meunier S. F.; Parenteau N. L. Development of a bilayered living skin construct for clinical applications. Biotechnol. Bioeng. 43: 747–756; 1994 doi:10.1002/bit.260430809.

    Article  PubMed  CAS  Google Scholar 

  • Woessner J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93: 440–447; 1961 doi:10.1016/0003-9861(61)90291-0.

    Article  PubMed  CAS  Google Scholar 

  • Yannas I. V.; Burke J. F.; Orgill D. P.; Skrabut E. M. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215: 174–176; 1982 doi:10.1126/science.7031899.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann D. R.; Dours-Zimmermann M. T.; Schubert M.; Bruckner-Tuderman L. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J. Cell Biol. 124: 817–825; 1994 doi:10.1083/jcb.124.5.817.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rachel Stock, Jessica Potzka, and Paul Kandola for expert technical assistance. We also thank William Fowle (Northeastern University) for assistance with scanning and transmission electron microscopy. We are grateful to Dr. Vincent Hascall (Cleveland Clinic Foundation) for sharing unpublished data regarding the implementation of FACE technology. We thank Drs. Bjorn Olsen (Harvard Medical School), Jim Rheinwald (Brigham and Women’s Hospital), Susan Sullivan, and Sam Clark for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Pouyani.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouyani, T., Ronfard, V., Scott, P.G. et al. De novo synthesis of human dermis in vitro in the absence of a three-dimensional scaffold. In Vitro Cell.Dev.Biol.-Animal 45, 430–441 (2009). https://doi.org/10.1007/s11626-009-9213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9213-6

Keywords

Navigation