Skip to main content
Log in

Different antigen presentation tendencies of granulocyte-macrophage colony-stimulating factor-induced bone marrow-derived macrophages and peritoneal macrophages

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced bone marrow-derived cells (BMCs) and primary peritoneal exudate cells (PECs) are usually used for antigen presentation in in vitro experiments. In order to expound their tendency for uptake and antigen presentation, we compared differences in the degree of phagocytosis, the expression of co-stimulatory molecules, and the activation of T lymphocytes between these two cell types. These assays used the F4/80 marker expression, as it is the general marker for macrophages. The BMC population was found to contain both F4/80bright and F4/80dim subtypes, while PECs were mainly composed of the F4/80bright subtype. Expression levels of cell surface co-stimulatory molecules, CD80, CD86, CD54, and CD40, were significantly higher for F4/80+BMCs than F4/80+PECs. Their expressions were further upregulated for F4/80+BMCs than for F4/80+PECs after stimulation with flagellin. F4/80+BMCs had a weaker ability to phagocytize microbeads than F4/80+PECs (P < 0.05), and we determined no relationship between F4/80 expression and phagocytosis. T lymphocytes were activated more efficiently after incubation with BMCs pulsed with flagellin than with pulsed PECs. In this study, F4/80+BMCs and F4/80+PECs represent the bone marrow-derived macrophages (BMMs) and peritoneal macrophages (PMs), respectively. These results indicate that PMs showed greater potential for phagocytosis, whereas GM-CSF-induced BMMs showed a tendency toward antigen presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Berg T. K.; Kraal G. A function for the macrophage F4/80 molecule in tolerance induction. Trends Immunol. 26: 506–509; 2005.

    Article  PubMed  Google Scholar 

  • Chow A.; Lucas D.; Hidalgo A.; Méndez-Ferrer S.; Hashimoto D.; Scheiermann C.; Battista M.; Leboeuf M.; Prophete C.; van Rooijen N.; Tanaka M.; Merad M.; Frenette P. S. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208: 261–271; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ducreux J.; Crocker P. R.; Vanbever R. Analysis of sialoadhesin expression on mouse alveolar macrophages. Immunol. Lett. 124: 77–80; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger M.; Passlick B.; Hofer T. Immunologic characterization of normal human pleural macrophages. Am. J. Respir. Cell Mol. Biol. 23: 419–426; 2000.

    PubMed  CAS  Google Scholar 

  • Getts D. R.; Turley D. M.; Smith C. E.; Harp C. T.; McCarthy D.; Feeney E. M.; Getts M. T.; Martin A. J.; Luo X.; Terry R. L.; King N. J.; Miller S. D. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. J. Immunol. 187: 2405–2417; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ghosn E. E. B.; Cassado A. A.; Govoni G. R.; Fukuhara T.; Yang Y.; Monack D. M.; Bortoluci K. R.; Almeida S. R.; Herzenberg L. A.; Herzenberg L. A. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc. Natl. Acad. Sci. U. S. A. 107: 2568–2573; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Guindi C.; Menard M.; Cloutier A.; Gaudreau S.; Besin G.; Larivee P.; McDonald P. P.; Dupuis G.; Amrani A. Differential role of NF-κB, ERK1/2 and AP-1 in modulating the immunoregulatory functions of bone marrow-derived dendritic cells from NOD mice. Cell. Immunol. 272: 259–268; 2012.

    Article  PubMed  CAS  Google Scholar 

  • He H.; Genovese K. J.; Swaggerty C. L.; Nisbet D. J.; Kogut M. H. In vivo priming heterophil innate immune functions and increasing resistance to Salmonella enteritidis infection in neonatal chickens by immune stimulatory CpG oligodeoxynucleotides. Vet. Immunol. Immunopathol. 117: 275–283; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Highfill S. L.; Rodriguez P. C.; Zhou Q.; Goetz C. A.; Koehn B. H.; Veenstra R.; Taylor P. A.; Panoskaltsis-Mortari A.; Serody J. S.; Munn D. H.; Tolar J.; Ochoa A. C.; Blazar B. R. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus- host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 116: 5738–5747; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita M.; Uchida T.; Sato A.; Nakashima M.; Nakashima H.; Shono S.; Habu Y.; Miyazaki H.; Hiroi S.; Seki S. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J. Hepatol. 53: 903–910; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Krausgruber T.; Blazek K.; Smallie T.; Alzabin S.; Lockstone H.; Sahgal N.; Hussell T.; Feldmann M.; Udalova I. A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12: 231–238; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kumari M.; Saxena R. K. Relative efficacy of uptake and presentation of Mycobacterium bovis BCG antigens by type I mouse lung epithelial cells and peritoneal macrophages. Infect. Immun. 79: 3159–3167; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Liu G.; Xia X. P.; Gong S. L.; Zhao Y. The macrophage heterogeneity: difference between mouse peritoneal exudate and splenic F4/80+ macrophages. J. Cell. Physiol. 209: 341–352; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Miao E. A.; Alpuche-Aranda C. M.; Dors M.; Clark A. E.; Bader M. W.; Miller S. I.; Aderem A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7: 569–575; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Neves P.; Lampropoulou V.; Calderon-Gomez E.; Roch T.; Stervbo U.; Shen P.; Kühl A. A.; Loddenkemper C.; Haury M.; Nedospasov S. A.; Kaufmann S. H.; Steinhoff U.; Calado D. P.; Fillatreau S. Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during Salmonella typhimurium infection. Immunity 33: 777–790; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ruybal P.; Gravisaco M.; Barcala V.; Escalada A.; Di Sciullo P.; Waldner C.; Mongini C. Complete rejection of a T-cell lymphoma due to synergism of T-cell receptor costimulatory molecules, CD80, CD40L and CD40. Vaccine 26: 697–705; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Schenk M.; Mueller C. Adaptations of intestinal macrophages to an antigen-rich environment. Semin. Immunol. 19: 84–93; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shimada K.; Crother T. R.; Karlin J.; Chen S.; Chiba N.; Ramanujan V. K.; Vergnes L.; Ojcius D. M.; Arditi M. Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection. PLoS One 6: 1–13; 2011.

    Google Scholar 

  • Skountzou I.; Martin M. D. P.; Wang B.; Ye L.; Koutsonanos D.; Weldon W.; Jacob J.; Compans R. W. Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine 28: 4103–4112; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Strindelius L.; Filler M.; Sjoholm I. Mucosal immunization with purified flagellin from Salmonella induces systemic and mucosal immune responses in C3H/HeJ mice. Vaccine 223: 3797–3808; 2004.

    Article  Google Scholar 

  • Wiese M.; Castiglione K.; Hensel M.; Schleicher U.; Bogdan C.; Jantsch J. Small interfering RNA (siRNA) delivery into murine bone marrow-derived macrophages by electroporation. J. Immunol. Methods 353: 102–110; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Williams J. C.; Craven R. R.; Earp H. S.; Kawula T. H.; Matsushima G. K. TAM receptors are dispensable in the phagocytosis and killing of bacteria. Cell. Immunol. 259: 128–134; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T.; Nagata K.; Kobayashi Y. Cytokine production by M-CSF- and GM-CSF-induced mouse bone marrow-derived macrophages upon coculturing with late apoptotic cells. Cell. Immunol. 251: 124–130; 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31172299), the Jangsu Natural Science Foundation (no. BK2010039), the Jiangsu “333” program (no. BRA2011141), the Program for Changjiang Scholars and Innovative Research Team in University (no. IRT0978), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinan Jiao.

Additional information

Editor: T. Okamoto

Maozhi Hu and Zhiming Pan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Pan, Z., Yang, Y. et al. Different antigen presentation tendencies of granulocyte-macrophage colony-stimulating factor-induced bone marrow-derived macrophages and peritoneal macrophages. In Vitro Cell.Dev.Biol.-Animal 48, 434–440 (2012). https://doi.org/10.1007/s11626-012-9535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9535-7

Keywords

Navigation