Skip to main content
Log in

Plasticity of Human THP–1 Cell Phagocytic Activity during Macrophagic Differentiation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Studies of the role of macrophages in phagocytosis are of great theoretical and practical importance for understanding how these cells are involved in the organism’s defense response and in the development of various pathologies. Here we investigated phagocytic plasticity of THP–1 (acute monocytic human leukemia) cells at different stages (days 1, 3, and 7) of phorbol ester (PMA)–induced macrophage differentiation. Analysis of cytokine profiles showed that PMA at a concentration of 100 nM induced development of the proinflammatory macrophage population. The functional activity of macrophages was assessed on days 3 and 7 of differentiation using unlabeled latex beads and latex beads conjugated with ligands (gelatin, mannan, and IgG Fc fragment) that bind to the corresponding specific receptors. The general phagocytic activity increased significantly (1.5–2.0–fold) in the course of differentiation; phagocytosis occurred mostly through the Fc receptors, as shown previously for M1 macrophages. On day 7, the levels of phagocytosis of gelatin-and Fc–covered beads were high; however, the intensity of ingestion of mannan–conjugated beads via mannose receptors increased 2.5–3.0–fold as well, which indicated formation of cells with an alternative phenotype similar to that of M2 macrophages. Thus, the type and the plasticity of phagocytic activity at certain stages of macrophage differentiation can be associated with the formation of functionally mature morphological phenotype. This allows macrophages to exhibit their phagocytic potential in response to specific ligands. These data are of fundamental importance and can be used to develop therapeutic methods for correcting the M1/M2 macrophage ratio in an organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP cells:

actively phagocytizing cells

CCL:

chemokine

DAPI:

4,6–diamidino–2–phenylindole hydrochloride

FcR:

immunoglobulin G receptor

Gel:

gelatin

IgG:

immunoglobulin G

IL:

interleukin

Man:

mannan

ManR:

mannose receptor

MCP1:

monocyte chemoattractant protein 1

PBS:

phosphate buffered saline

PI:

phagocytic index

PMA:

phorbol 12–myristate 13–acetate (phorbol ester)

PN:

phagocytic number (average number of beads in the cytoplasm)

RT–PCR:

reverse transcription polymerase chain reaction

THP–1:

human acute monocytic leukemia cell line

References

  1. Flannagan, R. S., Jaumouille, V., and Grinstein, S. (2012) The cell biology of phagocytosis, Annu. Rev. Pathol. Mech. Dis., 7, 61–98.

    Article  CAS  Google Scholar 

  2. Hoffmann, E., Marion, S., Mishra, B. B., John, M., Kratzke, R., Ahmad, S. F., Holzer, D., Anand, P. K., Weiss, D. G., Griffiths, G., and Kuznetsov, S. A. (2010) Initial receptor–ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis, Eur. J. Cell Biol., 89, 693–704.

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, P. R., Martinez–Pomares, L., Stacey, M., Lin, H–H., Brown, G. D., and Gordon, S. (2005) Macrophage receptors and immune recognition, Annu. Rev. Immunol., 23, 901–944.

    Article  CAS  PubMed  Google Scholar 

  4. Tessa, A. M., Meyaard, St., and Meyaard, L. (2011) Immune inhibitory receptors: essential regulators of phagocyte function, Eur. J. Immunol., 41, 575–587.

    Article  Google Scholar 

  5. Chimini, G., and Chavrier, P. (2000) Function of Rho family proteins in actin dynamics during phagocytosis and engulfment, Nat. Cell Biol., 2, E191–E196.

    Article  CAS  PubMed  Google Scholar 

  6. Geijtenbeek, T. B., and Gringhuis, S. I. (2009) Signalling through C–type lectin receptors: shaping immune responses, Nat. Rev. Immunol., 9, 465–479.

    Article  CAS  PubMed  Google Scholar 

  7. Brown, G. D. (2006) Dectin–1: a signalling non–TLR pattern–recognition receptor, Nat. Rev. Immunol., 6, 33–43.

    Article  CAS  PubMed  Google Scholar 

  8. Fadok, V. A., Warner, M. L., Bratton, D. L., and Henson, P. (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (avβ3), J. Immunol., 161, 6250–6257.

    CAS  PubMed  Google Scholar 

  9. Novoselov, V. V., Sazonova, M. A., Ivanova, E. A., and Orekhov, A. N. (2015) Study of the activated macrophage transcriptome, Exp. Mol. Pathol., 99, 575–580.

    Article  CAS  PubMed  Google Scholar 

  10. Gordon, S., and Martinez, F. O. (2010) Alternative activation of macrophages: mechanism and functions, Immunity, 32, 593–604.

    Article  CAS  PubMed  Google Scholar 

  11. Sica, A., and Mantovani, A. (2012) Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest., 122, 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mosser, D. M., and Edwards, J. P. (2008) Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol., 8, 958–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004) The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol., 25, 677–686.

    Article  CAS  PubMed  Google Scholar 

  14. Shishkina, V. C. (2014) Role of Pro–and Antiinflammatory M1 and M2 Macrophages in the Development of Atherosclerotic Lesions: Ph. D. Dissertation [in Russian], Moscow State University, Moscow.

    Google Scholar 

  15. Grigoryeva, O. A., Korovina, I. V., Gogia, B. Sh., and Sysoeva, V. Yu. (2014) Migration properties of adiposetissue–derived mesenchymal stromal cells cocultured with activated monocytes in vitro, Cell Tiss. Biol., 8, 359–367.

    Article  Google Scholar 

  16. Chanput, W., Mes, J. J., and Wichers, H. J. (2014) THP–1cell line: an in vitro model for immune modulation approach, Int. Immunopharmacol., 23, 37–45.

    Article  CAS  PubMed  Google Scholar 

  17. Qin, Z. (2012) The use of THP–1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature, Atherosclerosis, 221, 2–11.

    Article  CAS  PubMed  Google Scholar 

  18. Barendsen, N., Mueller, M., and Chen, B. (1990) Inhibition of TPA–induced monocytic differentiation in THP–1 human monocytic leukemic cells by staurosporine: a potent protein kinase C inhibitor, Leuk. Res., 14, 467–474.

    Article  CAS  PubMed  Google Scholar 

  19. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., and Tada, K. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP–1), Int. J. Cancer, 26, 171–176.

    Article  CAS  PubMed  Google Scholar 

  20. Auwerx, J. (1991) The human leukemia cell line, THP–1: a multifacetted model for the study of monocyte–macrophage differentiation, Experientia, 47, 22–31.

    CAS  Google Scholar 

  21. Schwende, H., Fitzke, E., Ambs, P., and Dieter, P. (1996) Differences in the state of differentiation of THP–1 cells induced by phorbol ester and 1,25–dihydroxyvitamin D3, J. Leukoc. Biol., 59, 555–561.

    Article  CAS  PubMed  Google Scholar 

  22. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., and Hill, A. M. (2000) M–1/M–2 macrophages and the Th1/Th2 paradigm, J. Immunol., 164, 6166–6173.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez, F. O., and Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000Prime Rep., 6, 12703.

    Article  Google Scholar 

  24. Monastyrskaya, E. A., Lyamina, S. V., and Malyshev, I. Yu. (2008) M1 and M2 phenotypes of activated macrophages and their role in immune response and pathologies, Patogenez, 4, 31–39.

    Google Scholar 

  25. Genin, M., Clement, F., Fattaccioli, A., Raes, M., and Michiels, C. (2015) M1 and M2 macrophages derived from THP–1 cells differentially modulate the response of cancer cells to etoposide, BMC Cancer, 15, 577.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stout, R. D., Watkins, S. K., and Suttles, J. (2009) Functional plasticity of macrophages: in situ reprogramming of tumorassociated macrophages, J. Leukoc. Biol., 86, 1105–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akagawa, K. S. (2002) Functional heterogeneity of colonystimulating factor induced human monocyte–derived macrophages, Int. J. Hematol., 76, 27–34.

    Article  CAS  PubMed  Google Scholar 

  28. Vogel, D. Y., Glim, J. E., Stavenuiter, A. W., Breur, M., Heijnen, P., Amor, S., Dijkstra, C. D., and Beelen, R. H. (2014) Human macrophage polarization in vitro: maturation and activation methods compared, Immunobiology, 219, 695–703.

    Article  CAS  PubMed  Google Scholar 

  29. Waldo, S. W., Li, Y., Buono, C., Zhao, B., Billings, E. M., Chang, J., and Kruth, H. S. (2008) Heterogeneity of human macrophages in culture and in atherosclerotic plaques, Am. J. Pathol., 172, 1112–1126.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Spiller, K. L., Anfang, R. R., Spiller, K. J., Ng, J., Nakazawa, K. R., Daulton, J. W., and Vunjak–Novakovic, G. (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds, Biomaterials, 35, 4477–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, E. K., Jung, H. S., Yang, H. I., Yoo, M. C., Kim, C., and Kim, K. S. (2007) Optimized THP–1 differentiation is required for the detection of responses to weak stimuli, Inflamm. Res., 56, 45–50.

    Article  CAS  PubMed  Google Scholar 

  32. Tjiu, J. W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., Tsai, T. F., Chiu, H. C., Dai, Y. S., Inoue, H., Yang, P. C., Kuo, M. L., and Jee, S. H. (2009) Tumorassociated macrophage–induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase–2 induction, J. Invest. Dermatol., 129, 1016–1025.

    Article  CAS  PubMed  Google Scholar 

  33. Leidi, M., Gotti, E., Bologna, L., Miranda, E., Rimoldi, M., Sica, A., Roncalli, M., Palumbo, G. A., Introna, M., and Golay, J. (2009) M2 macrophages phagocytose rituximab–opsonized leukemic targets more efficiently than M1 cells in vitro, J. Immunol., 182, 4415–4422.

    Article  CAS  PubMed  Google Scholar 

  34. He, C., and Carter, A. B. (2015) The metabolic prospective and redox regulation of macrophage polarization, J. Clin. Cell Immunol., 6, 371–387.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Canton, J. (2014) Phagosome maturation in polarized macrophages, J. Leukoc. Biol., 96, 729–738.

    Article  PubMed  Google Scholar 

  36. Canton, J., Khezri, R., Glogauer, M., and Grinstein, S. (2014) Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages, Mol. Biol. Cell, 25, 3330–3341.

    Article  PubMed  PubMed Central  Google Scholar 

  37. George, L., Upadhyay, Sw., Ganguly, K., and Stoeger, T. (2014) Macrophage polarization in lung biology and diseases, in Lung Inflammation (Ong, K. C., ed.) InTech, pp. 29–57.

    Google Scholar 

  38. Demyanenko, N. G., Lepekha, L. N., Shmelev, E. I., Averbakh, M. M., Statsuk, T. A., and Sivokozov, I. V. (2016) Macrophages and cytokines in wash–offs from bronchi and alveolae in patients with newly diagnosed tuberculosis and recurring sarcoidosis of respiratory organs, Tuberkulez Bolezni Legkikh, 94, 59–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Erokhina.

Additional information

Original Russian Text © A. V. Kurynina, M. V. Erokhina, O. A. Makarevich, V. Yu. Sysoeva, L. N. Lepekha, S. A. Kuznetsov, G. E. Onishchenko, 2018, published in Biokhimiya, 2018, Vol. 83, No. 3, pp. 309–327.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurynina, A.V., Erokhina, M.V., Makarevich, O.A. et al. Plasticity of Human THP–1 Cell Phagocytic Activity during Macrophagic Differentiation. Biochemistry Moscow 83, 200–214 (2018). https://doi.org/10.1134/S0006297918030021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918030021

Keywords

Navigation