Skip to main content
Log in

Differentiation potential of a basal epithelial cell line established from human bronchial explant

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Due to the cellular complexity of the airway epithelium, it is important to carefully define bronchial cell lines that capture the phenotypic traits of a particular cell type. We describe the characterization of a human bronchial epithelial cell line, VA10. It was established by transfection of primary bronchial epithelial cells with retroviral constructs containing the E6 and E7 oncogenes from HPV16. The cell line has been cultured for over 2 yr, a total of 60 passages. Although prolonged culture resulted in increased chromosomal instability, no major phenotypic drift in marker expression was observed. The cells expressed cytokeratins 5, 13, 14, and 17 suggesting a basal-like phenotype. This was further supported by the expression of α6β4 integrins and the basal cell-associated transcription factor p63. The VA10 cell line generated high transepithelial electrical resistance in suspended and air–liquid interface culture, indicating functionally active tight junction (TJ) complexes. Immunocytochemistry showed the typical reticular structures of occludin and TJ-associated F-actin. VA10 produced pseudostratified layer in air–liquid interface culture with expression of p63 restricted to the basal layer. Furthermore, VA10 produced round colonies when cultured in laminin-rich reconstituted basement membrane, and immunostaining of claudin-1 and the basolateral marker β4 integrin revealed colonies that generated polarization as expected in vivo. These data indicate that VA10 epithelia have the potential to model the bronchial epithelium in vivo and may be useful to study epithelial regeneration and repair and the effect of chemicals and potential drug candidates on TJ molecules in airway epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Asgrimsson, V., Gudjonsson, T., Gudmundsson, G. H., and Baldursson, O.: Novel effects of azithromycin on tight junction proteins in human airway epithelia. Antimicrob Agents Chemother 50 (5): 1805–12, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–54, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Burkart, K. M., Barton, S. J., Holloway, J. W., Yang, I. A., Cakebread, J. A., Cruikshank, W., Little, F., Jin, X., Farrer, L. A., Clough, J. B., Keith, T. P., Holgate, S., Center, D. M., and O'Connor, G. T.: Association of asthma with a functional promoter polymorphism in the IL16 gene. J Allergy Clin Immunol 117 (1): 86–91, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Cookson, W.: The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat Rev Immunol 4 (12): 978–88, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Coursen, J. D., Bennett, W. P., Gollahon, L., Shay, J. W., and Harris, C. C.: Genomic instability and telomerase activity in human bronchial epithelial cells during immortalization by human papillomavirus-16 E6 and E7 genes. Exp Cell Res 235 (1): 245–53, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cozens, A. L., Yezzi, M. J., Kunzelmann, K., Ohrui, T., Chin, L., Eng, K., Finkbeiner, W. E., Widdicombe, J. H., and Gruenert, D. C.: CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10 (1): 38–47, 1994.

    PubMed  CAS  Google Scholar 

  • Daniely, Y., Liao, G., Dixon, D., Linnoila, R. I., Lori, A., Randell, S. H., Oren, M., and Jetten, A. M.: Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol 287 (1): C171-81, 2004.

    Article  PubMed  CAS  Google Scholar 

  • De Silva, R., Whitaker, N. J., Rogan, E. M., and Reddel, R. R.: HPV-16 E6 and E7 genes, like SV40 early region genes, are insufficient for immortalization of human mesothelial and bronchial epithelial cells. Exp Cell Res 213 (2): 418–27, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, B., and Ehrhardt, C.: Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60 (2): 193–205, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Fridriksdottir, A. J., Villadsen, R., Gudjonsson, T., and Petersen, O. W.: Maintenance of cell type diversification in the human breast. J Mammary Gland Biol Neoplasia 10 (1): 61–74, 2005.

    Article  PubMed  Google Scholar 

  • Furukawa, T., Duguid, W. P., Rosenberg, L., Viallet, J., Galloway, D. A., and Tsao, M. S.: Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 148 (6): 1763–70, 1996.

    PubMed  CAS  Google Scholar 

  • Garbe, J., Wong, M., Wigington, D., Yaswen, P., and Stampfer, M. R.: Viral oncogenes accelerate conversion to immortality of cultured conditionally immortal human mammary epithelial cells. Oncogene 18 (13): 2169–80., 1999.

    Article  PubMed  CAS  Google Scholar 

  • Gruenert, D. C., Finkbeiner, W. E., and Widdicombe, J. H.: Culture and transformation of human airway epithelial cells. Am J Physiol 268 (3 Pt 1): L347–60, 1995.

    PubMed  CAS  Google Scholar 

  • Gudjonsson, T., Villadsen, R., Nielsen, H. L., Ronnov-Jessen, L., Bissell, M. J., and Petersen, O. W.: Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16 (6): 693–706, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gudjonsson, T., Villadsen, R., Ronnov-Jessen, L., and Petersen, O. W.: Immortalization protocols used in cell culture models of human breast morphogenesis. Cell Mol Life Sci 61 (19–20): 2523–34, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Halbert, C. L., Demers, G. W., and Galloway, D. A.: The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol 66 (4): 2125–34., 1992.

    PubMed  CAS  Google Scholar 

  • Hong, K. U., Reynolds, S. D., Watkins, S., Fuchs, E., and Stripp, B. R.: Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164 (2): 577–88, 2004.

    PubMed  CAS  Google Scholar 

  • Hudson, D. L., Guy, A. T., Fry, P., O'Hare, M. J., Watt, F. M., and Masters, J. R.: Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 49 (2): 271–8, 2001.

    PubMed  CAS  Google Scholar 

  • Karp, P. H., Moninger, T. O., Weber, S. P., Nesselhauf, T. S., Launspach, J. L., Zabner, J., and Welsh, M. J.: An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol 188: 115–37, 2002.

    PubMed  Google Scholar 

  • Knight, D. A., and Holgate, S. T.: The airway epithelium: structural and functional properties in health and disease. Respirology 8 (4): 432–46, 2003.

    Article  PubMed  Google Scholar 

  • Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., and Todaro, G.: A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17 (1): 62–70, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Little, F. F., Cruikshank, W. W., and Center, D. M.: Il-9 stimulates release of chemotactic factors from human bronchial epithelial cells. Am J Respir Cell Mol Biol 25 (3): 347–52, 2001.

    PubMed  CAS  Google Scholar 

  • Rawlins, E. L., and Hogan, B. L.: Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133 (13): 2455–65, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Reddel, R. R., Ke, Y., Gerwin, B. I., McMenamin, M. G., Lechner, J. F., Su, R. T., Brash, D. E., Park, J. B., Rhim, J. S., and Harris, C. C.: Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res 48 (7): 1904–9, 1988.

    PubMed  CAS  Google Scholar 

  • Shen, B. Q., Finkbeiner, W. E., Wine, J. J., Mrsny, R. J., and Widdicombe, J. H.: Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl- secretion. Am J Physiol 266 (5 Pt 1): L493–501, 1994.

    PubMed  CAS  Google Scholar 

  • Viallet, J., Liu, C., Emond, J., and Tsao, M. S.: Characterization of human bronchial epithelial cells immortalized by the E6 and E7 genes of human papillomavirus type 16. Exp Cell Res 212 (1): 36–41, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F.: Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Sci 353 (1370): 831–837, 1998.

    Article  CAS  Google Scholar 

  • Whitsett, J. A.: Intrinsic and innate defenses in the lung: intersection of pathways regulating lung morphogenesis, host defense, and repair. J Clin Invest 109 (5): 565–9, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Willey, J. C., Broussoud, A., Sleemi, A., Bennett, W. P., Cerutti, P., and Harris, C. C.: Immortalization of normal human bronchial epithelial cells by human papillomaviruses 16 or 18. Cancer Res 51 (19): 5370–7, 1991.

    PubMed  CAS  Google Scholar 

  • Zwerschke, W., and Jansen-Durr, P.: Cell transformation by the E7 oncoprotein of human papillomavirus type 16: interactions with nuclear and cytoplasmic target proteins. Adv Cancer Res 78: 1–29, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant support was provided by The Icelandic Research Council, Landspitali University Hospital Research Fund, University of Iceland Research Fund, and Science and Technology Policy Council-Thematic program in postgenomic biomedicine. We thank Prof. Michael J. Welsh at the University of Iowa for providing primary bronchial cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorarinn Gudjonsson.

Additional information

Editor: J. Denry Sato

SH an VA contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halldorsson, S., Asgrimsson, V., Axelsson, I. et al. Differentiation potential of a basal epithelial cell line established from human bronchial explant. In Vitro Cell.Dev.Biol.-Animal 43, 283–289 (2007). https://doi.org/10.1007/s11626-007-9050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9050-4

Keywords

Navigation