Skip to main content

Advertisement

Log in

Molecular analysis and characterization of PrEc, commercially available prostate epithelial cells

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Adenocarcinoma of the prostate comprises 95% of all prostate cancer. Commercially available primary cultures of “Normal” prostate epithelial cells, PrECs, have been used as a convenient model to investigate neoplastic transformation. Here PrECs were characterized for the expression of lineage- and developmental-specific markers cytokeratin (CK) 8 and 18, p63, chromogranin A, TMEPAI, S100P, NKX 3.1, ANKH, and FN 1 as well as androgen receptor and prostatespecific antigen by Western blot and Northern blot analyses, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and quantitative real-time PCR. Immunohistochemical staining detected PrECs positive in varying degrees for p63, CK 8, and CK 18, with only the rare cell being positive for chromograpnin A. The PrECs also tested positive for p63 protein by Western blot analysis. RT-PCR with PrEC cDNA showed products for FN 1 and S100P but not for ANKH and androgen receptor or prostate-specific antigen. This profile of markers in PrEC cells is consistent with that expected for pubertal prostate epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amler, L. C.; Agus, D. B.; LeDuc, C., et al. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-RI. Cancer Res. 60:6134–6141; 2000.

    PubMed  CAS  Google Scholar 

  • Averboukh, L.; Liang, P.; Kantoff, P. W.; Pardee, A. B. Regulation of S100P expression by androgen. Prostate 29:350–355; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Becker, T.; Cerke, V.; Kube, E.; Weber, K. S100P, a novel Ca(2+)-binding protein from human placenta: cDNA cloning, recombinant protein expression and Ca2+ binding properties. Eur. J. Biochem. 207:541–547; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bieberich, C. J.; Fujita, K.; He, W. W.; Jay, G. Prostate-specific and androgendependent expression of a novel homeobox gene. J. Biol. Chem. 271:31779–31782; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H.; Remberger, K. Widespread distribution of nuclear androgen receptors in the basal cell layer of the normal and hyperplastic human prostate. Virchows Arch. A Pathol. Anat. Histopathol. 422:35–38; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H.; Stein, U.; Remberger, K. Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum. Pathol. 25:42–46; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann, A. O.; Faber, P. W.; van Rooij, H. C., et al. The human androgen receptor: domain structure, genomic organization and regulation of expression. J. Steroid Biochem. 34:307–310; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Bruchovsky, N.; Rennie, P. S.; Vanson, A. Studies on the regulation of the concentration of androgens and androgen receptors in nuclei of prostatic cells. Biochim. Biophys. Acta 394:248–266; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Coffey, D. S.; Shimazaki, J.; Williams-Ashman, H. G. Polymerization of deoxyribonucleotides in relation to androgen-induced prostatic growth. Arch. Biochem. Biophys. 124:184–198; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Denmeade, S. R.; Isaacs, J. T. Programmed cell death (apoptosis) and cancer chemotherapy, Cancer Control 3:303–309; 1906.

    Google Scholar 

  • Denmeade, S. R.; Lin, X. S.; Isacs, J. T. Rote of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251–265; 1996.

    Article  PubMed  CAS  Google Scholar 

  • DePrimo, S. E.; Diehn, M.; Nelson, J. B., et al. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol. 3:RESEARCH0032.1-0032.12; 2002.

    Article  Google Scholar 

  • Dhanasckaran, S. M.; Barrette, T. R.; Ghosh, D., et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826; 2001.

    Article  Google Scholar 

  • Garraway, L. A.; Lin, D.; Signoretti, S., et al. Intermediate basal cells of the prostate: in vitro and in vivo characterization. Proastate 55:206–218; 2003.

    Article  Google Scholar 

  • Hammacher, A.; Thompson, E. W.; Williams, E. D. Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. Int. J. Biochem. Cell Biol. 37:442–450; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Harper, M. E.; Glynne-Jones, E.; Goddard, L., et al. Expression of androgen receptor and growth factors in premalignant lessions of the prostate. J. Pathol. 186:169–177; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hasenson, M.; Lundh, B.; Stege, R., et al. PAP and PSA in prostatic carcinoma cell lines and aspiration biopsies: relation to hormone sensitivity and to cytological grading. Prostate 14:83–90; 1989.

    Article  PubMed  CAS  Google Scholar 

  • He, W. W.; Sciavolino, P. J.; Wing, J., et al. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43:69–77; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hewish, D. R.; Burgoyne, L. A. The calcium dependent endonucleas activity of isolated nuclear preparations: relationships between its occurrence and the occurrence of other classes of enzymes found in nuclear preparations. Biochem. Biophys. Res. Commun. 52:475–481; 1973a.

    Article  PubMed  CAS  Google Scholar 

  • Hewish, D. R.; Burgoyne, L. A. Chromatin sub-structure: the digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Commun. 52:504–510; 1973b.

    Article  PubMed  CAS  Google Scholar 

  • Horoszewicz, J. S., et al., The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980. 37 p. 115–32.

    PubMed  CAS  Google Scholar 

  • Isaacs, J. T. Control of cell proliferantion and cell deathin normal and neoplastic prostate. In: Rogers, C. H., et al., ed. Benign prostatic hyperplasia, Vol. II. NIH Publication No. 87-2881, Bethesada, MD: National Institutes of Health; 1987:85–94.

    Google Scholar 

  • Krijnen, J. L.; Janssen, P. J.; Ruizeveld de Winter, J. A., et al. Do neuroendocrine cells in human prostate cancer express androgen receptor? Histochemistry 100:393–398; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Muller, P. Y.; Janovjak, H.; Miserez, A. R.; Dobbie, Z. Processing of gene expression data generated, by quantitative real-time RT-PCR. Biotechniques 32:1372–1374, 1376, 1378–1379; 2002.

    PubMed  CAS  Google Scholar 

  • Nagle, R. B.; Ahmann, F. R.; McDaniel, K. M., et al. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res, 47:281–286; 1987.

    PubMed  CAS  Google Scholar 

  • Nakada, S. Y.; di Sant’Agnese, P. A.; Moynes, R. A., et al. The androgen receptor status of neuroendocrine cells in human benign and malignant prostatic tissue. Cancer Res. 53:1967–1970; 1993.

    PubMed  CAS  Google Scholar 

  • Peehl, D. M. Primary cell cultures as models of prostate cancer development. Endocr. Relat. Cancer 12:19–47; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Porkka, K. P.; Visakorpi, T. Detection of differentially expressed genes in prostate cancer by combining suppression subtractive hybridization and cDNA library array. J. Pathol. 193:73–79; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, J. L.; Blok, L.; Tindall, D. J. Isolation and androgen regulation of the human homeobox cDNA, NKX3.1. Prostate 35:71–80; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Reagan-Shaw, S.; Ahmad, N. Silencing of polo-like kinase (Plk) 1 via siRNA causes induction of apoptosis and impairment of mitosis machinery in human prostate cancer cells: implications for the treatment of prostate cancer. FASEB J. 19:611–613; 2005.

    PubMed  CAS  Google Scholar 

  • Skotheim, R. I.; Korkmaz, K. S.; Klokk, T. I., et al. NKX3.1 expression is lost in testicular germ cell tumors. Am. J. Pathol. 163:2149–2154; 2003.

    PubMed  CAS  Google Scholar 

  • Sobel, R. E.; Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines-part I. J. Urol. 173:342–359; 2005a.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, R. E.; Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines-part 2. J. Urol. 173:360–372; 2005b.

    Article  PubMed  CAS  Google Scholar 

  • Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, T.; Bruchovsky, N.; Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem. 277:7076–7085; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Visakorpi, T.; Hyytinen, E.; Koivisto, P., et al. In vivo amplification of the androgen receptor gene and progeression of human prostate cancer. Nat. Genet. 9:401–406; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Voelkel-Johnson, C. An antibody against DR4 (TRAIL-R1) in combination with doxorubicin selectively kills malignant but not normal prostate cells. Cancer Biol. Ther. 2:283–290; 2003.

    PubMed  CAS  Google Scholar 

  • Wang, Y.; Hayward, S.; Cao, M., et al. Cell differentiation lineage in the prostate. Differentiation 68:270–279; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L. L.; Srikantan, V.; Sesterhenn, I. A., et al. Expression profile of an androgen regulated prostate specific homeobox gene NKX3.1 in primary prostate cancer. J. Urol. 163:972–979; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Young, C. Y.; Montgomery, B. T.; Andrews, P. E., et al. Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP, Cancer Res. 51:3748–3752; 1991.

    PubMed  CAS  Google Scholar 

  • Zhou, Z. X.; Lane, M. V.; Kemppainen, J. A., et al. Specificity of liganddependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 9:208–218; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne D. Sadar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobel, R.E., Wang, Y. & Sadar, M.D. Molecular analysis and characterization of PrEc, commercially available prostate epithelial cells. In Vitro Cell.Dev.Biol.-Animal 42, 33–39 (2006). https://doi.org/10.1007/s11626-006-0009-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-006-0009-7

Key words

Navigation