Skip to main content

Advertisement

Log in

CT and MRI of pancreatic tumors: an update in the era of radiomics

  • Invited Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Radiomics is a relatively new approach for image analysis. As a part of radiomics, texture analysis, which consists in extracting a great amount of quantitative data from original images, can be used to identify specific features that can help determining the actual nature of a pancreatic lesion and providing other information such as resectability, tumor grade, tumor response to neoadjuvant therapy or survival after surgery. In this review, the basic of radiomics, recent developments and the results of texture analysis using computed tomography and magnetic resonance imaging in the field of pancreatic tumors are presented. Future applications of radiomics, such as artificial intelligence, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2D:

Two dimensions

3D:

Three dimensions

ACM:

Angle co-occurrence matrices

ADC:

Apparent diffusion coefficient

AIP:

Auto-immune pancreatitis

AUC:

Area under receiver operating characteristic curve

CA:

Cancer antigen

CT:

Computed tomography

DFS:

Disease-free survival

DWI:

Diffusion-weighted imaging

GLCM:

Gray-level co-occurrence matrix

GLRLM:

Gray-level run length matrix

IPAS:

Intrapancreatic accessory spleen

IPMN:

Intraductal papillary mucinous neoplasm

LASSO:

Least absolute shrinkage and selection operator

MRI:

Magnetic resonance imaging

NEC:

Neuroendocrine carcinoma

NEN:

Neuroendocrine neoplasm

NET:

Neuroendocrine tumor

NGTDM:

Neighborhood gray-tone difference matrix

PDAC:

Pancreatic ductal adenocarcinoma

PET:

Positron emission tomography

PNEN:

Pancreatic neuroendocrine neoplasm

ROI:

Region of interest

RLM:

Run-length matrices

TA:

Texture analysis

WHO:

World Health Organization

References

  1. Hain E, Sindayigaya R, Fawaz J, Gharios J, Bouteloup G, Soyer P, et al. Surgical management of pancreatic neuroendocrine tumors: an introduction. Expert Rev Anticancer Ther. 2019;19(12):1089–100.

    CAS  PubMed  Google Scholar 

  2. Jornet D, Soyer P, Terris B, Hoeffel C, Oudjit A, Legmann P, et al. MR imaging features of pancreatic acinar cell carcinoma. Diagn Interv Imaging. 2019;100(7–8):427–35.

    CAS  PubMed  Google Scholar 

  3. Barat M, Dohan A, Gaujoux S, Hoeffel C, Jornet D, Oudjit A, et al. Computed tomography features of acinar cell carcinoma of the pancreas. Diagn Interv Imaging. 2020. https://doi.org/10.1016/j.diii.2020.02.007.

    Article  PubMed  Google Scholar 

  4. Takakura K, Sumiyama K, Munakata K, Ashida H, Arihiro S, Kakutani H, et al. Clinical usefulness of diffusion-weighted MR imaging for detection of pancreatic cancer: comparison with enhanced multidetector-row CT. Abdom Imaging. 2011;36(4):457–62.

    PubMed  Google Scholar 

  5. Park S, Chu LC, Hruban RH, Vogelstein B, Kinzler KW, Yuille AL, et al. Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features. Diagn Interv Imaging. 2020;101(9):555–564.

    CAS  PubMed  Google Scholar 

  6. Zins M, Matos C, Cassinotto C. Pancreatic adenocarcinoma staging in the era of preoperative chemotherapy and radiation therapy. Radiology. 2018;287(2):374–90.

    PubMed  Google Scholar 

  7. Barral M, Taouli B, Guiu B, Koh DM, Luciani A, Manfredi R, et al. Diffusion-weighted MR imaging of the pancreas: current status and recommendations. Radiology. 2015;274(1):45–63.

    PubMed  Google Scholar 

  8. Barral M, SebbagSfez D, Hoeffel C, Chaput U, Dohan A, Eveno C, et al. Characterization of focal pancreatic lesions using normalized apparent diffusion coefficient at 1.5-Tesla: preliminary experience. Diagn Interv Imaging. 2013;94(6):619–27.

    CAS  PubMed  Google Scholar 

  9. Palmieri LJ, Coriat R. (18)F-FDG PET/CT in pancreatic adenocarcinoma: on the edge of a paradigm shift? Diagn Interv Imaging. 2019;100(12):731–3.

    PubMed  Google Scholar 

  10. Wartski M, Sauvanet A. 18F-FDG PET/CT in pancreatic adenocarcinoma: a role at initial imaging staging? Diagn Interv Imaging. 2019;100(12):735–41.

    CAS  PubMed  Google Scholar 

  11. Ozaki K, Ikeno H, Kaizaki Y, Maeda K, Higuchi S, Kosaka N, et al. Pearls and pitfalls of imaging features of pancreatic cystic lesions: a case-based approach with imaging-pathologic correlation. Jpn J Radiol. 2020. https://doi.org/10.1007/s11604-020-01032-1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Savadjiev P, Chong J, Dohan A, Agnus V, Forghani R, Reinhold C, et al. Image-based biomarkers for solid tumor quantification. Eur Radiol. 2019;29(10):5431–40.

    PubMed  Google Scholar 

  13. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–9.

    CAS  PubMed  Google Scholar 

  14. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.

    PubMed  Google Scholar 

  15. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.

    PubMed  Google Scholar 

  16. Gao X, Wang X. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: a preliminary study. Diagn Interv Imaging. 2020;101(2):91–100.

    CAS  PubMed  Google Scholar 

  17. Chu LC, Park S, Kawamoto S, Yuille AL, Hruban RH, Fishman EK. Pancreatic cancer imaging: a new look at an old problem. Curr Probl Diagn Radiol. 2020. https://doi.org/10.1067/j.cpradiol.2020.08.002.

    Article  PubMed  Google Scholar 

  18. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics. 2017;37(5):1483–503.

    PubMed  Google Scholar 

  19. Dalal V, Carmicheal J, Dhaliwal A, Jain M, Kaur S. Radiomics in stratification of pancreatic cystic lesions: machine learning in action. Cancer Lett. 2020;469:228–37.

    CAS  PubMed  Google Scholar 

  20. Dohan A, Gallix B, Guiu B, Le Malicot K, Reinhold C, Soyer P, et al. Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab. Gut. 2020;69(3):531–9.

    CAS  PubMed  Google Scholar 

  21. Attiyeh MA, Chakraborty J, Doussot A, Langdon-Embry L, Mainarich S, Gönen M, et al. Survival prediction in pancreatic ductal adenocarcinoma by quantitative computed tomography image analysis. Ann Surg Oncol. 2018;25(4):1034–42.

    PubMed  PubMed Central  Google Scholar 

  22. Attiyeh MA, Chakraborty J, Gazit L, Langdon-Embry L, Gonen M, Balachandran VP, et al. Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis. HPB. 2019;21(2):212–8.

    PubMed  Google Scholar 

  23. Attiyeh MA, Chakraborty J, McIntyre CA, Kappagantula R, Chou Y, Askan G, et al. CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. Abdom Radiol. 2019;44(9):3148–57.

    Google Scholar 

  24. Harrington KA, Williams TL, Lawrence SA, Chakraborty J, Al Efishat MA, Attiyeh MA, et al. Multimodal radiomics and cyst fluid inflammatory markers model to predict preoperative risk in intraductal papillary mucinous neoplasms. J Med Imaging. 2020;7(3):031507.

    Google Scholar 

  25. Eilaghi A, Baig S, Zhang Y, Zhang J, Karanicolas P, Gallinger S, et al. CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma: a quantitative analysis. BMC Med Imaging. 2017;17(1):38.

    PubMed  PubMed Central  Google Scholar 

  26. Yun G, Kim YH, Lee YJ, Kim B, Hwang JH, Choi DJ. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep. 2018;8(1):7226.

    PubMed  PubMed Central  Google Scholar 

  27. Cassinotto C, Chong J, Zogopoulos G, Reinhold C, Chiche L, Lafourcade JP, et al. Resectable pancreatic adenocarcinoma: role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur J Radiol. 2017;90:152–8.

    PubMed  Google Scholar 

  28. Zhu L, Shi X, Xue H, Wu H, Chen G, Sun H, et al. CT imaging biomarkers predict clinical outcomes after pancreatic cancer surgery. Medicine. 2016;95(5):e2664.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Azoulay A, Cros J, Vullierme MP, de Mestier L, Couvelard A, Hentic O, et al. Morphological imaging and CT histogram analysis to differentiate pancreatic neuroendocrine tumor grade 3 from neuroendocrine carcinoma. Diagn Interv Imaging. 2020. https://doi.org/10.1016/j.diii.2020.06.006.

    Article  PubMed  Google Scholar 

  30. Li J, Lu J, Liang P, Li A, Hu Y, Shen Y, et al. Differentiation of atypical pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas: using whole-tumor CT texture analysis as quantitative biomarkers. Cancer Med. 2018;7(10):4924–31.

    PubMed  PubMed Central  Google Scholar 

  31. Hanania AN, Bantis LE, Feng Z, Wang H, Tamm EP, Katz MH, et al. Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget. 2016;7(52):85776–84.

    PubMed  PubMed Central  Google Scholar 

  32. Guo C, Zhuge X, Wang Z, Wang Q, Sun K, Feng Z, et al. Textural analysis on contrast-enhanced CT in pancreatic neuroendocrine neoplasms: association with WHO grade. Abdom Radiol. 2019;44(2):576–85.

    Google Scholar 

  33. Ohki K, Igarashi T, Ashida H, Takenaga S, Shiraishi M, Nozawa Y, Ojiri H. Usefulness of texture analysis for grading pancreatic neuroendocrine tumors on contrast-enhanced computed tomography and apparent diffusion coefficient maps. Jpn J Radiol. 2020. https://doi.org/10.1007/s11604-020-01038-9.

    Article  PubMed  Google Scholar 

  34. Ciaravino V, Cardobi N, Robertis DE, R, Capelli P, Melisi D, Simionato F, , et al. CT Texture analysis of ductal adenocarcinoma downstaged after chemotherapy. Anticancer Res. 2018;38(8):4889–95.

    PubMed  Google Scholar 

  35. Noda Y, Goshima S, Miyoshi T, Kawada H, Kawai N, Tanahashi Y, et al. Assessing chemotherapeutic response in pancreatic ductal adenocarcinoma: histogram analysis of iodine concentration and CT number in single-source dual-energy CT. AJR Am J Roentgenol. 2018;211(6):1221–6.

    PubMed  Google Scholar 

  36. Lin X, Xu L, Wu A, Guo C, Chen X, Wang Z. Differentiation of intrapancreatic accessory spleen from small hypervascular neuroendocrine tumor of the pancreas: textural analysis on contrast-enhanced computed tomography. Acta Radiol. 2019;60(5):553–60.

    PubMed  Google Scholar 

  37. Choi TW, Kim JH, Yu MH, Park SJ, Han JK. Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis. Acta Radiol. 2018;59(4):383–92.

    CAS  PubMed  Google Scholar 

  38. Canellas R, Burk KS, Parakh A, Sahani DV. Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. AJR Am J Roentgenol. 2018;210(2):341–6.

    PubMed  Google Scholar 

  39. Chen X, Oshima K, Schott D, Wu H, Hall W, Song Y, et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: an exploratory study. PLoS ONE. 2017;12(6):e0178961.

    PubMed  PubMed Central  Google Scholar 

  40. Cozzi L, Comito T, Fogliata A, Franzese C, Franceschini D, Bonifacio C, et al. Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS ONE. 2019;14(1):e0210758.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei R, Lin K, Yan W, Guo Y, Wang Y, Li J, Zhu J. Computer-aided diagnosis of pancreas serous cystic neoplasms: a radiomics method on preoperative MDCT images. Technol Cancer Res Treat. 2019;18:1533033818824339.

    PubMed  PubMed Central  Google Scholar 

  42. Gu D, Hu Y, Ding H, Wei J, Chen K, Liu H, Zeng M, Tian J. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol. 2019;29(12):6880–90.

    PubMed  Google Scholar 

  43. Chu LC, Park S, Kawamoto S, Fouladi DF, Shayesteh S, Zinreich ES, et al. Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. AJR Am J Roentgenol. 2019;213(2):349–57.

    PubMed  Google Scholar 

  44. D’Onofrio M, Ciaravino V, Cardobi N, De Robertis R, Cingarlini S, Landoni L, et al. CT enhancement and 3D texture analysis of pancreatic neuroendocrine neoplasms. Sci Rep. 2019;9(1):2176.

    PubMed  PubMed Central  Google Scholar 

  45. Zhao Z, Bian Y, Jiang H, Fang X, Li J, Cao K, et al. CT-radiomic approach to predict G1/2 nonfunctional pancreatic neuroendocrine tumor. Acad Radiol. 2020. https://doi.org/10.1016/j.acra.2020.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liang W, Yang P, Huang R, Xu L, Wang J, Liu W, et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors. Clin Cancer Res. 2019;25(2):584–94.

    PubMed  Google Scholar 

  47. Kim BR, Kim JH, Ahn SJ, Joo I, Choi SY, Park SJ, et al. CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture analysis. Eur Radiol. 2019;29(1):362–72.

    PubMed  Google Scholar 

  48. Kim HS, Kim YJ, Kim KG, Park JS. Preoperative CT texture features predict prognosis after curative resection in pancreatic cancer. Sci Rep. 2019;22(9(1)):17389.

    Google Scholar 

  49. Permuth JB, Choi J, Balarunathan Y, Kim J, Chen DT, Chen L, et al. Combining radiomic features with a miRNA classifier may improve prediction of malignant pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget. 2016;7(52):85785–97.

    PubMed  PubMed Central  Google Scholar 

  50. Chakraborty J, Langdon-Embry L, Cunanan KM, Escalon JG, Allen PJ, Lowery MA, et al. Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients. PLoS ONE. 2017;12(12):e0188022.

    PubMed  PubMed Central  Google Scholar 

  51. Huang Z, Li M, He D, Wei Y, Yu H, Wang Y, et al. Two-dimensional texture analysis based on CT images to differentiate pancreatic lymphoma and pancreatic adenocarcinoma: a preliminary study. Acad Radiol. 2019;26(8):e189–95.

    PubMed  Google Scholar 

  52. Yamashita K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M. CT texture analysis of pancreatic cancer. Eur Radiol. 2019;29(3):1067–73.

    Google Scholar 

  53. Yamashita R, Perrin T, Chakraborty J, Chou JF, Horvat N, Koszalka MA, et al. Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. Eur Radiol. 2020;30(1):195–205.

    PubMed  Google Scholar 

  54. Sandrasegaran K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M. CT texture analysis of pancreatic cancer. Eur Radiol. 2019;29(3):1067–73.

    PubMed  Google Scholar 

  55. Bian Y, Jiang H, Ma C, Wang L, Zheng J, Jin G, et al. CT-based radiomics score for distinguishing between grade 1 and grade 2 nonfunctioning pancreatic neuroendocrine tumors. AJR Am J Roentgenol. 2020;215(4):852–63.

    PubMed  Google Scholar 

  56. Bian Y, Guo S, Jiang H, Gao S, Shao C, Cao K, Fang X, Li J, Wang L, Hua W, Zheng J, Jin G, Lu J. Relationship between radiomics and risk of lymph node metastasis in pancreatic ductal adenocarcinoma. Pancreas. 2019;48(9):1195–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Pol CB, Lee S, Tsai S, Larocque N, Alayed A, Williams P, et al. Differentiation of pancreatic neuroendocrine tumors from pancreas renal cell carcinoma metastases on CT using qualitative and quantitative features. Abdom Radiol. 2019;44(3):992–9.

    Google Scholar 

  58. Mori M, Benedetti G, Partelli S, Sini C, Andreasi V, Broggi S, et al. CT radiomic features of pancreatic neuroendocrine neoplasms (panNEN) are robust against delineation uncertainty. Phys Med. 2019;57:41–6.

    PubMed  Google Scholar 

  59. Yang J, Guo X, Ou X, Zhang W, Ma X. Discrimination of pancreatic serous cystadenomas from mucinous cystadenomas with CT textural features: based on machine learning. Front Oncol. 2019;9:494.

    PubMed  PubMed Central  Google Scholar 

  60. Guo CG, Ren S, Chen X, Wang QD, Xiao WB, Zhang JF, et al. Pancreatic neuroendocrine tumor: prediction of the tumor grade using magnetic resonance imaging findings and texture analysis with 3-T magnetic resonance. Cancer Manag Res. 2019;11:1933–44.

    PubMed  PubMed Central  Google Scholar 

  61. Li X, Zhu H, Qian X, Chen N, Lin X. MRI texture analysis for differentiating nonfunctional pancreatic neuroendocrine neoplasms from solid pseudopapillary neoplasms of the pancreas. Acad Radiol. 2020;27(6):815–23.

    PubMed  Google Scholar 

  62. De Robertis R, Maris B, Cardobi N, Tinazzi Martini P, Gobbo S, Capelli P, et al. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors? Eur Radiol. 2018;28(6):2582–91.

    PubMed  Google Scholar 

  63. Hoffman DH, Ream JM, Hajdu CH, Rosenkrantz AB. Utility of whole-lesion ADC histogram metrics for assessing the malignant potential of pancreatic intraductal papillary mucinous neoplasms (IPMNs). Abdom Radiol. 2017;42(4):1222–8.

    Google Scholar 

  64. Bian Y, Zhao Z, Jiang H, Fang X, Li J, Cao K, et al. Noncontrast radiomics approach for predicting grades of nonfunctional pancreatic neuroendocrine tumors. J Magn Reson Imaging. 2020;52(4):1124–36.

    PubMed  PubMed Central  Google Scholar 

  65. Bian Y, Li J, Cao K, Fang X, Jiang H, Ma C, et al. Magnetic resonance imaging radiomic analysis can preoperatively predict G1 and G2/3 grades in patients with NF-pNETs. Abdom Radiol. 2020. https://doi.org/10.1007/s00261-020-02706-0.

    Article  Google Scholar 

  66. Pereira JAS, Rosado E, Bali M, Metens T, Chao SL. Pancreatic neuroendocrine tumors: correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade. Abdom Imaging. 2015;40(8):3122–8.

    PubMed  Google Scholar 

  67. Choi MH, Lee YJ, Yoon SB, Choi JI, Jung SE, Rha SE. MRI of pancreatic ductal adenocarcinoma: texture analysis of T2-weighted images for predicting long-term outcome. Abdom Radiol. 2019;44(1):122–30.

    Google Scholar 

  68. Belli ML, Mori M, Broggi S, Cattaneo GM, Bettinardi V, Dell’Oca I, et al. Quantifying the robustness of 18FFDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med. 2018;49:105–11.

    PubMed  Google Scholar 

  69. Larue RTHM, Van Timmeren JE, de Jong EEC, Feliciani G, Leijenaar RTH, Scheurs WMJ, et al. Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol. 2017;56(11):1544–53.

    PubMed  Google Scholar 

  70. Duron L, Balvay D, Vande Perre S, Bouchouicha A, Savatovsky J, Sadik JC, et al. Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS ONE. 2019;14(3):e0213459.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Madico C, Herpe G, Vesselle G, Boucebci S, Tougeron D, Sylvain C, et al. Intra peritoneal abdominal fat area measured from computed tomography is an independent factor of severe acute pancreatitis. Diagn Interv Imaging. 2019;100(7–8):421–6.

    CAS  PubMed  Google Scholar 

  72. Balagurunathan Y, Gu Y, Wang H, Kumar V, Grove O, Hawkins S, et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol. 2014;7:72–87.

    PubMed  PubMed Central  Google Scholar 

  73. Chu LC, Solmaz B, Park S, Kawamoto S, Yuille AL, Hruban RH, et al. Diagnostic performance of commercially available vs. in-house radiomics software in classification of CT images from patients with pancreatic ductal adenocarcinoma vs. healthy controls. Abdom Radiol. 2020;45(8):2469–75.

    Google Scholar 

  74. Nougaret S, Tardieu M, Vargas HA, Reinhold C, Vande Perre S, Bonanno N, et al. Ovarian cancer: an update on imaging in the era of radiomics. Diagn Interv Imaging. 2019;100:647–55.

    CAS  PubMed  Google Scholar 

  75. Matzner-Lober E, Suehs CM, Dohan A, Molinari N. Thoughts on entering correlated imaging variables into a multivariable model: application to radiomics and texture analysis. Diagn Interv Imaging. 2018;99(5):269–70.

    CAS  PubMed  Google Scholar 

  76. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–95.

    CAS  PubMed  Google Scholar 

  77. Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics. 2017;18:9.

    PubMed  PubMed Central  Google Scholar 

  78. Akai H, Yasaka K, Kunimatsu A, Nojima M, Kokudo T, Kokudo N, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging. 2018;99(10):643–51.

    CAS  PubMed  Google Scholar 

  79. Guo C, Zhuge X, Wang Q, Xiao W, Wang Z, Feng Z, et al. The differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma: the values of CT imaging features and texture analysis. Cancer Imaging. 2018;18(1):37.

    PubMed  PubMed Central  Google Scholar 

  80. Ren S, Zhang J, Chen J, Cui W, Zhao R, Qiu W, et al. Evaluation of texture analysis for the differential diagnosis of mass-forming pancreatitis from pancreatic ductal adenocarcinoma on contrast-enhanced CT images. Front Oncol. 2019;9:1171.

    PubMed  PubMed Central  Google Scholar 

  81. Haj-Mirzaian A, Kawamoto S, Zaheer A, Hruban RH, Fishman EK, Chu LC. Pitfalls in the MDCT of pancreatic cancer: strategies for minimizing errors. Abdom Radiol. 2020;45(2):457–78.

    Google Scholar 

  82. Tang TY, Li X, Zhang Q, Guo CX, Zhang XZ, Lao MY, et al. Development of a novel multiparametric MRI radiomic nomogram for preoperative evaluation of early recurrence in resectable pancreatic cancer. J Magn Reson Imaging. 2019;52(1):231–45.

    PubMed  PubMed Central  Google Scholar 

  83. McClaine RJ, Lowy AM, Sussman JJ, Schmulewitz N, Grisell DL, Ahmad SA. Neoadjuvant therapy may lead to successful surgical resection and improved survival in patients with borderline resectable pancreatic cancer. HPB. 2010;12(1):73–9.

    PubMed  PubMed Central  Google Scholar 

  84. Cassinotto C, Cortade J, Belleannée G, Lapuyade B, Terrebonne E, Vendrely V, et al. An evaluation of the accuracy of CT when determining resectability of pancreatic head adenocarcinoma after neoadjuvant treatment. Eur J Radiol. 2013;82(4):589–93.

    PubMed  Google Scholar 

  85. Cheng SH, Cheng YJ, Jin ZY, Xue HD. Unresectable pancreatic ductal adenocarcinoma: role of CT quantitative imaging biomarkers for predicting outcomes of patients treated with chemotherapy. Eur J Radiol. 2019;113:188–97.

    PubMed  Google Scholar 

  86. Bian Y, Jiang H, Ma C, Cao K, Fang X, Li J, et al. Performance of CT-based radiomics in diagnosis of superior mesenteric vein resection margin in patients with pancreatic head cancer. Abdom Radiol. 2020;45(3):759–73.

    Google Scholar 

  87. Perren A, Couvelard A, Scoazec JY, Costa F, Borbath I, Delle Fave G, et al. ENETS Consensus guidelines for the standards of care in neuroendocrine tumors: pathology, diagnosis and prognostic stratification. Neuroendocrinology. 2017;105(3):196–200.

    CAS  PubMed  Google Scholar 

  88. Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO Classification of tumours of the digestive system. 4th ed. Lyon: IARC; 2010. p. 417.

    Google Scholar 

  89. Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39(5):683–90.

    PubMed  PubMed Central  Google Scholar 

  90. Lloyd RV, Osamura RY, Klöppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: International Agency for Research on Cancer; 2017. p. 355.

    Google Scholar 

  91. Kim DW, Kim HJ, Kim KW, Byun JH, Song KB, Kim JH, et al. Neuroendocrine neoplasms of the pancreas at dynamic enhanced CT: comparison between grade 3 neuroendocrine carcinoma and grade 1/2 neuroendocrine tumour. Eur Radiol. 2015;25(5):1375–83.

    PubMed  Google Scholar 

  92. Kulali F, Semiz-Oysu A, Demir M, Segmen-Yilmaz M, Bukte Y. Role of diffusion-weighted MR imaging in predicting the grade of nonfunctional pancreatic neuroendocrine tumors. Diagn Interv Imaging. 2018;99(5):301–9.

    CAS  PubMed  Google Scholar 

  93. Salahshour F, Mehrabinejad MM, Zare Dehnavi A, Alibakhshi A, Dashti H, Ataee MA, et al. Pancreatic neuroendocrine tumors (pNETs): the predictive value of MDCT characteristics in the differentiation of histopathological grades. Abdom Radiol. 2020. https://doi.org/10.1007/s00261-019-02372-x.

    Article  Google Scholar 

  94. Kawamoto S, Johnson PT, Hall H, Cameron JL, Hruban RH, Fishman EK. Intrapancreatic accessory spleen: CT appearance and differential diagnosis. Abdom Radiol. 2012;37(5):812–27.

    Google Scholar 

  95. Kang TW, Kim SH, Lee J, Kim AY, Jang KM, Choi D, et al. Differentiation between pancreatic metastases from renal cell carcinoma and hypervascular neuroendocrine tumour: use of relative percentage washout value and its clinical implication. Eur J Radiol. 2015;84(11):2089–96.

    PubMed  Google Scholar 

  96. Tanaka M, Fernández-del Castillo C, Kamisawa T, Jang JY, Levy P, Ohtsuka T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 2017;17(5):738–53.

    PubMed  Google Scholar 

  97. Tanaka M, Fernández-del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12(3):183–97.

    PubMed  Google Scholar 

  98. Chakraborty J, Midya A, Gazit L, Attiyeh M, Langdon-Embry L, Allen PJ, et al. CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas. Med Phys. 2018;45(11):5019–29.

    PubMed  Google Scholar 

  99. Kumar H, DeSouza SV, Petrov MS. Automated pancreas segmentation from computed tomography and magnetic resonance images: a systematic review. Comput Methods Programs Biomed. 2019;178:319–28.

    PubMed  Google Scholar 

  100. Park S, Chu LC, Fishman EK, Yuille AL, Vogelstein B, Kinzler KW, et al. Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation. Diagn Interv Imaging. 2020;101(1):35–44.

    CAS  PubMed  Google Scholar 

  101. Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med Image Anal. 2019;55:88–102.

    PubMed  Google Scholar 

  102. Weisberg EM, Chu LC, Park S, Yuille AL, Kinzler KW, Vogelstein B, et al. Deep lessons learned: Radiology, oncology, pathology, and computer science experts unite around artificial intelligence to strive for earlier pancreatic cancer diagnosis. Diagn Interv Imaging. 2020;101(2):111–5.

    CAS  PubMed  Google Scholar 

  103. Chu LC, Park S, Kawamoto S, Wang Y, Zhou Y, Shen W, et al. Application of deep learning to pancreatic cancer detection: lessons learned from our initial experience. J Am Coll Radiol. 2019;16(9 Pt B):1338–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Soyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoli, M., Barat, M., Dohan, A. et al. CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol 38, 1111–1124 (2020). https://doi.org/10.1007/s11604-020-01057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-020-01057-6

Keywords

Navigation