Skip to main content
Log in

Computed tomography-based radiomics approach in pancreatic tumors characterization

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Radiomics (or texture analysis) is a new imaging analysis technique that allows calculating the distribution of texture features of pixel and voxel values depend on the type of ROI (3D or 2D), their relationships in the image. Depending on the software, up to several thousand texture elements can be obtained. Radiomics opens up wide opportunities for differential diagnosis and prognosis of pancreatic neoplasias. The aim of this review was to highlight the main diagnostic advantages of texture analysis in different pancreatic tumors. The review describes the diagnostic performance of radiomics in different pancreatic tumor types, application methods, and problems. Texture analysis in PDAC is able to predict tumor grade and associates with lymphovascular invasion and postoperative margin status. In pancreatic neuroendocrine tumors, texture features strongly correlate with differentiation grade and allows distinguishing it from the intrapancreatic accessory spleen. In pancreatic cystic lesions, radiomics is able to accurately differentiate MCN from SCN and distinguish clinically insignificant lesions from IPMNs with advanced neoplasia. In conclusion, the use of the CT radiomics approach provides a higher diagnostic performance of CT imaging in pancreatic tumors differentiation and prognosis. Future studies should be carried out to improve accuracy and facilitate radiomics workflow in pancreatic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McGuigan A, Kelly P, Turkington RC et al (2018) Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 24:4846–4861

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  3. Shah MH, Goldner WS, Halfdanarson TR et al (2018) Neuroendocrine and adrenal tumors, version 2.2018 featured updates to the nccn guidelines. JNCCN J Natl Compr Cancer Netw 16:693–702

    Article  CAS  Google Scholar 

  4. Daly MB, Pilarski R, Yurgelun MB et al (2020) Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 1.2020 featured updates to the NCCN guidelines. JNCCN J Natl Compr Cancer Netw 18:380–391. https://doi.org/10.6004/jnccn.2020.0017

    Article  Google Scholar 

  5. Khanna L, Prasad SR, Sunnapwar A et al (2020) Pancreatic neuroendocrine neo-plasms: 2020 update on pathologic and imaging findings and classification. Radiographics 40:1240–1262. https://doi.org/10.1148/rg.2020200025

    Article  PubMed  Google Scholar 

  6. Xuan W, You G (2020) Detection and diagnosis of pancreatic tumor using deep learning-based hierarchical convolutional neural network on the internet of medical things platform. Futur Gener Comput Syst 111:132–142. https://doi.org/10.1016/j.future.2020.04.037

    Article  Google Scholar 

  7. Elbanna KY, Jang H-J, Kim TK (2020) Imaging diagnosis and staging of pancreatic ductal adenocarcinoma: a comprehensive review. Insights Imaging 11:58. https://doi.org/10.1186/s13244-020-00861-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nioche C, Orlhac F, Boughdad S et al (2018) Lifex: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125

    Article  CAS  PubMed  Google Scholar 

  9. Inzani F, Petrone G, Rindi G (2018) The new world health organization classification for pancreatic neuroendocrine Neoplasia. Endocrinol Metab Clin North Am 47:463–470. https://doi.org/10.1016/j.ecl.2018.04.008

    Article  PubMed  Google Scholar 

  10. Tanaka H, Hijioka S, Hosoda W et al (2020) Pancreatic neuroendocrine carcinoma G3 may be heterogeneous and could be classified into two distinct groups. Pancreatology 20:1421–1427. https://doi.org/10.1016/j.pan.2020.07.400

    Article  CAS  PubMed  Google Scholar 

  11. Liang W, Yang P, Huang R et al (2019) A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors. Clin Cancer Res 25:584–594. https://doi.org/10.1158/1078-0432.CCR-18-1305

    Article  PubMed  Google Scholar 

  12. Guo C, Zhuge X, Wang Z et al (2019) Textural analysis on contrast-enhanced CT in pancreatic neuroendocrine neoplasms: association with WHO grade. Abdom Radiol 44:576–585. https://doi.org/10.1007/s00261-018-1763-1

    Article  Google Scholar 

  13. Canellas R, Burk KS, Parakh A, Sahani DV (2018) Prediction of Pancreatic neuroendocrine tumor grade based on CT features and texture analysis. Am J Roentgenol 210:341–346. https://doi.org/10.2214/AJR.17.18417

    Article  Google Scholar 

  14. D’Onofrio M, Ciaravino V, Cardobi N et al (2019) CT enhancement and 3D texture analysis of pancreatic neuroendocrine Neoplasms. Sci Rep. https://doi.org/10.1038/s41598-018-38459-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bian Y, Jiang H, Ma C et al (2020) CT-based radiomics score for distinguishing between grade 1 and grade 2 nonfunctioning pancreatic neuroendocrine tumors. Am J Roentgenol 215:852–863. https://doi.org/10.2214/AJR.19.22123

    Article  Google Scholar 

  16. Gu D, Hu Y, Ding H et al (2019) CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol 29:6880–6890. https://doi.org/10.1007/s00330-019-06176-x

    Article  PubMed  Google Scholar 

  17. Choi TW, Kim JH, Yu MH et al (2018) Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis. Acta Radiol 59:383–392. https://doi.org/10.1177/0284185117725367

    Article  CAS  PubMed  Google Scholar 

  18. Azoulay A, Cros J, Vullierme MP et al (2020) Morphological imaging and CT histogram analysis to differentiate pancreatic neuroendocrine tumor grade 3 from neuroendocrine carcinoma. Diagn Interv Imaging 101:821–830. https://doi.org/10.1016/j.diii.2020.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Ohki K, Igarashi T, Ashida H et al (2021) Usefulness of texture analysis for grading pancreatic neuroendocrine tumors on contrast-enhanced computed tomography and apparent diffusion coefficient maps. Jpn J Radiol 39:66–75. https://doi.org/10.1007/s11604-020-01038-9

    Article  PubMed  Google Scholar 

  20. Bian Y, Zhao Z, Jiang H et al (2020) <scp>Noncontrast</scp> Radiomics approach for predicting grades of nonfunctional pancreatic neuroendocrine tumors. J Magn Reson Imag 52:1124–1136. https://doi.org/10.1002/jmri.27176

    Article  Google Scholar 

  21. Pavic M, Bogowicz M, Würms X et al (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol (Madr) 57:1070–1074. https://doi.org/10.1080/0284186X.2018.1445283

    Article  Google Scholar 

  22. Loi S, Mori M, Benedetti G et al (2020) Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms. Phys Medica 76:125–133. https://doi.org/10.1016/j.ejmp.2020.06.025

    Article  Google Scholar 

  23. Gruzdev IS, Zamyatina KA, Tikhonova VS et al (2020) Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2020.109371

    Article  PubMed  Google Scholar 

  24. Benedetti G, Mori M, Panzeri MM et al (2021) CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. Radiol Medica. https://doi.org/10.1007/s11547-021-01333-z

    Article  Google Scholar 

  25. Belousova E, Karmazanovsky G, Kriger A et al (2017) Contrast-enhanced MDCT in patients with pancreatic neuroendocrine tumours: correlation with histological findings and diagnostic performance in differentiation between tumour grades. Clin Radiol 72:150–158. https://doi.org/10.1016/j.crad.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  26. Lin X, Xu L, Wu A et al (2019) Differentiation of intrapancreatic accessory spleen from small hypervascular neuroendocrine tumor of the pancreas: textural analysis on contrast-enhanced computed tomography. Acta Radiol 60:553–560. https://doi.org/10.1177/0284185118788895

    Article  PubMed  Google Scholar 

  27. van der Pol CB, Lee S, Tsai S et al (2019) Differentiation of pancreatic neuroendocrine tumors from pancreas renal cell carcinoma metastases on CT using qualitative and quantitative features. Abdom Radiol 44:992–999. https://doi.org/10.1007/s00261-018-01889-x

    Article  Google Scholar 

  28. Li J, Lu J, Liang P et al (2018) Differentiation of atypical pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas: using whole-tumor CT texture analysis as quantitative biomarkers. Cancer Med 7:4924–4931. https://doi.org/10.1002/cam4.1746

    Article  PubMed  PubMed Central  Google Scholar 

  29. Karmazanovsky G, Belousova E, Schima W et al (2019) Nonhypervascular pancreatic neuroendocrine tumors: spectrum of MDCT imaging findings and differentiation from pancreatic ductal adenocarcinoma. Eur J Radiol 110:66–73. https://doi.org/10.1016/j.ejrad.2018.04.006

    Article  PubMed  Google Scholar 

  30. Ren S, Chen X, Wang Z et al (2019) Differentiation of hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinoma using contrast-enhanced computed tomography. PLoS ONE. https://doi.org/10.1371/journal.pone.0211566

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reinert CP, Baumgartner K, Hepp T et al (2020) Complementary role of computed tomography texture analysis for differentiation of pancreatic ductal adenocarcinoma from pancreatic neuroendocrine tumors in the portal-venous enhancement phase. Abdom Radiol 45:750–758. https://doi.org/10.1007/s00261-020-02406-9

    Article  Google Scholar 

  32. Yu H, Huang Z, Li M et al (2020) Differential Diagnosis of Nonhypervascular pancreatic neuroendocrine neoplasms from pancreatic ductal adenocarcinomas, based on computed tomography radiological features and texture analysis. Acad Radiol 27:332–341. https://doi.org/10.1016/j.acra.2019.06.012

    Article  PubMed  Google Scholar 

  33. Sahani DV, Sainani NI, Blake MA et al (2011) Prospective evaluation of reader performance on MDCT in characterization of cystic pancreatic lesions and prediction of cyst biologic aggressiveness. Am J Roentgenol 197:W53–W61. https://doi.org/10.2214/AJR.10.5866

    Article  Google Scholar 

  34. Dalal V, Carmicheal J, Dhaliwal A et al (2020) Radiomics in stratification of pancreatic cystic lesions: machine learning in action. Cancer Lett 469:228–237

    Article  CAS  PubMed  Google Scholar 

  35. Dmitriev K, Kaufman AE, Javed AA et al (2017) Classification of pancreatic cysts in computed tomography images using a random forest and convolutional neural network ensemble. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, New York, pp 150–158

    Google Scholar 

  36. Wei R, Lin K, Yan W et al (2019) Computer-aided diagnosis of pancreas serous cystic neoplasms: a radiomics method on preoperative MDCT images. Technol Cancer Res Treat. https://doi.org/10.1177/1533033818824339

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang J, Guo X, Ou X et al (2019) Discrimination of pancreatic serous cystadenomas from mucinous cystadenomas with CT textural features: based on machine learning. Front Oncol 9:494. https://doi.org/10.3389/fonc.2019.00494

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ha S, Choi H, Cheon GJ et al (2014) Autoclustering of non-small cell lung carcinoma subtypes on 18F-FDG PET using texture analysis: a preliminary result. Nucl Med Mol Imag 48:278–286. https://doi.org/10.1007/s13139-014-0283-3

    Article  CAS  Google Scholar 

  39. Permuth JB, Choi J, Balarunathan Y et al (2016) Combining radiomic features with a miRNA classifier may improve prediction of malignant pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 7:85785–85797. https://doi.org/10.18632/oncotarget.11768

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chakraborty J, Midya A, Gazit L et al (2018) CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas. Med Phys 45:5019–5029. https://doi.org/10.1002/mp.13159

    Article  PubMed  Google Scholar 

  41. Cassinotto C, Chong J, Zogopoulos G et al (2017) Resectable pancreatic adenocarcinoma: role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur J Radiol 90:152–158. https://doi.org/10.1016/j.ejrad.2017.02.033

    Article  PubMed  Google Scholar 

  42. Yun G, Kim YH, Lee YJ et al (2018) Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep. https://doi.org/10.1038/s41598-018-25627-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cozzi L, Comito T, Fogliata A et al (2019) Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS ONE 14:e0210758. https://doi.org/10.1371/journal.pone.0210758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen X, Oshima K, Schott D et al (2017) Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: an exploratory study. PLoS ONE. https://doi.org/10.1371/journal.pone.0178961

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang W, Cai W, He B et al (2018) A radiomics-based formula for the preoperative prediction of postoperative pancreatic fistula in patients with pancreaticoduodenectomy. Cancer Manag Res 10:6469–6478. https://doi.org/10.2147/CMAR.S185865

    Article  PubMed  PubMed Central  Google Scholar 

  46. Park S, Chu LC, Hruban RH et al (2020) Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features. Diagn Interv Imaging 101:555–564. https://doi.org/10.1016/j.diii.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  47. Zaheer A, Singh VK, Akshintala VS et al (2014) Differentiating autoimmune pancreatitis from pancreatic adenocarcinoma using dual-phase computed tomography. J Comput Assist Tomogr 38:146–152. https://doi.org/10.1097/RCT.0b013e3182a9a431

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mulkeen AL, Yoo PS, Cha C (2006) Less common neoplasms of the pancreas. World J Gastroenterol 12:3180–3185

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hansen CP, Kristensen TS, Storkholm JH, Federspiel BH (2019) Solid pseudopapillary neoplasm of the pancreas: clinical-pathological features and management, a single-center experience. Rare Tumors. https://doi.org/10.1177/2036361319878513

    Article  PubMed  PubMed Central  Google Scholar 

  50. Song T, Zhang QW, Duan SF et al (2021) MRI-based radiomics approach for differentiation of hypovascular non-functional pancreatic neuroendocrine tumors and solid pseudopapillary neoplasms of the pancreas. BMC Med Imag. https://doi.org/10.1186/s12880-021-00563-x

    Article  Google Scholar 

  51. Law JK, Ahmed A, Singh VK et al (2014) A systematic review of solid-pseudopapillary neoplasms: are these rare lesions? Pancreas 43:331–337

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li X, Zhu H, Qian X et al (2020) MRI texture analysis for differentiating nonfunctional pancreatic neuroendocrine neoplasms from solid pseudopapillary neoplasms of the pancreas. Acad Radiol 27:815–823. https://doi.org/10.1016/j.acra.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  53. Shi Y-J, Zhu H-T, Liu Y-L et al (2020) Radiomics analysis based on diffusion kurtosis imaging and T2 weighted imaging for differentiation of pancreatic neuroendocrine tumors from solid pseudopapillary tumors. Front Oncol 10:1624. https://doi.org/10.3389/fonc.2020.01624

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Gruzdev.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research involving human participants and/or animals

This is a literature review without humans or animals data. Therefore, no ethical approval is required.

Informed consent

This is a literature review without humans or animals data. Therefore, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmazanovsky, G., Gruzdev, I., Tikhonova, V. et al. Computed tomography-based radiomics approach in pancreatic tumors characterization. Radiol med 126, 1388–1395 (2021). https://doi.org/10.1007/s11547-021-01405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-021-01405-0

Keywords

Navigation