Skip to main content

Advertisement

Log in

Detectability of the artery of Adamkiewicz on computed tomography angiography of the aorta by using ultra-high-resolution computed tomography

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the detectability of AKA on aortic computed tomography angiography (CTA) using ultra-high-resolution computed tomography (UHRCT).

Materials and methods

Twenty-eight patients were enrolled. They underwent aortic CTA with UHRCT (UHRCTA) and had previously undergone aortic conventional CTA (CCTA). The injection protocol of UHRCTA was the same as that of CCTA. The bolus tracking technique was used. UHRCTA images were reconstructed with adaptive iterative dose reduction (strong) and with forward-projected model-based iterative reconstruction solution. The matrix size and slice thickness on UHRCT were 1024 and 0.25 mm, respectively, and those on conventional CT were 512 and 0.5 or 0.67 mm, respectively. The UHRCTA and CCTA images were visually compared by using four scales. A score of 4 or 3 indicated that the AKA was assessable. In this instance, the contrast-to-noise ratios of each UHRCTA were measured. The exposure dose and signal-to-noise ratios were also investigated.

Results

The AKA visualization scores obtained with UHRCTA with forward-projected model-based iterative reconstruction solution were significantly higher than those with adaptive iterative dose reduction (p = 0.018) and CCTA (p = 0.0024).

Conclusion

UHRCT can contribute to the better visualization of the AKA on aortic CTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AKA:

Artery of Adamkiewicz

CTA:

Computed tomography angiography

CCTA:

Conventional computed tomography angiography

UHRCT:

Ultra-high-resolution computed tomography

DSA:

Digital subtraction angiography

UHRCTA:

Ultra-high-resolution computed tomography angiography

AIDR:

The adaptive iterative dose reduction algorithm

FIRST:

Forward-projected model-based iterative reconstruction solution algorithm

MPR:

Multiple planar reconstruction

EVAR:

Endovascular aortic repair

FBP:

Filtered back projection

CT-AEC:

CT automatic exposure control

HU:

Hounsfield units

ROI:

Region of interest

SNR:

Signal-to-noise ratio

SD:

Standard deviation

CNR:

Contrast-to-noise ratio

CTDIvol:

CT dose index volume

DLP:

Dose-length-product

References

  1. Nijenhuis RJ, Jacobs MJ, Jaspers K, Reinders M, van Engelshoven JM, Leiner T, et al. Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients. J Vasc Surg. 2007;45:677–85. https://doi.org/10.1016/j.jvs.2006.11.046.

    Article  PubMed  Google Scholar 

  2. Grabitz K, Sandmann W, Stuhmeiner K, Mainzer B, Godehardt E, Ohle B, et al. The risk of ischemic spinal cord injury in patients undergoing graft replacement for thoracoabdominal aortic aneurysms. J Vasc Surg. 1996;23:230–40. https://doi.org/10.1016/S0741-5214(96)70267-7.

    Article  CAS  PubMed  Google Scholar 

  3. Kouchoukos NT, Dougenis D. Surgery of the thoracic aorta. N Engl J Med. 1997;336:1876–89. https://doi.org/10.1056/NEJM199706263362606.

    Article  CAS  PubMed  Google Scholar 

  4. Chiesa R, Melissano G, Marrocco-Trischitta MM, Civilini E, Setacci F. Spinal cord ischemia after elective stent-graft repair of the thoracic aorta. J Vasc Surg. 2005;42:11–7. https://doi.org/10.1016/j.jvs.2005.04.016.

    Article  PubMed  Google Scholar 

  5. Greenberg R, Resch T, Nyman U, Lindh M, Brunkwall J, Brunkwall P, et al. Endovascular repair of descending thoracic aortic aneurysms: an early experience with intermediate-term follow-up. J Vasc Surg. 2000;31:147–56. https://doi.org/10.1016/S0741-5214(00)70076-0.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka H, Ogino H, Minatoya K, Matsui Y, Higami T, Okabayashi H, et al. Japanese Study of Spinal Cord Protection in Descending and Thoracoabdominal Aortic Repair investigators. The impact of preoperative identification of the Adamkiewicz artery on descending and thoracoabdominal aortic repair. J Thorac Cardiovasc Surg. 2016;151:122–8. https://doi.org/10.1016/j.jtcvs.2015.07.079.

    Article  PubMed  Google Scholar 

  7. Kawaharada N, Morishita K, Fukuda J, Yamada A, Muraki S, Hyodoh H, et al. Thoracoabdominal or descending aortic aneurysm repair after demonstration of the Adamkiewicz artery by magnetic resonance angiography. Eur J Cardiothorac Surg. 2002;21:970–4. https://doi.org/10.1016/S1010-7940(02)00097-0.

    Article  PubMed  Google Scholar 

  8. Kieffer E, Fukui S, Chiras J, Koskas F, Bahnini A, Cormier E. Spinal cord arteriography: a safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg. 2002;35:262–8. https://doi.org/10.1067/mva.2002.120378.

    Article  PubMed  Google Scholar 

  9. Takase K, Sawamura Y, Igarashi K, Chiba Y, Haga K, Saito H, et al. Demonstration of the artery of Adamkiewicz at multi-detector row helical CT. Radiology. 2002;223:39–45. https://doi.org/10.1148/radiol.2231010513.

    Article  PubMed  Google Scholar 

  10. Yoshioka K, Niinuma H, Ohira A, Nasu K, Kawakami T, Sasaki M, et al. MR angiography and CT angiography of the artery of Adamkiewicz: noninvasive preoperative assessment of thoracoabdominal aortic aneurysm. Radiographics. 2003;23:1215–25. https://doi.org/10.1148/rg.235025031.

    Article  PubMed  Google Scholar 

  11. Kudo K, Terae S, Asano T, Oka M, Kaneko K, Ushikoshi S, et al. Anterior spinal artery and artery of Adamkiewicz detected by using multi-detector row CT. AJNR Am J Neuroradiol. 2003;24:13–7 PMID: 12533320.

    PubMed  PubMed Central  Google Scholar 

  12. Frederick JR, Woo YJ. Thoracoabdominal aortic aneurysm. Ann Cardiothorac Surg. 2012;1:277–85. https://doi.org/10.3978/j.issn.2225-319X.2012.09.01.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yoshioka K, Tanaka R, Takagi H, Ueyama Y, Kikuchi K, Chiba T, et al. Ultra-high-resolution CT angiography of the artery of Adamkiewicz: a feasibility study. Neuroradiology. 2018;60:109–15. https://doi.org/10.1007/s00234-017-1927-7.

    Article  PubMed  Google Scholar 

  14. Nishida J, Kitagawa K, Nagata M, Yamazaki A, Nagasawa N, Sakuma H. Model-based iterative reconstruction for multi-detector row CT assessment of the Adamkiewicz artery. Radiology. 2014;270:282–91. https://doi.org/10.1148/radiol.13122019.

    Article  PubMed  Google Scholar 

  15. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

    Article  CAS  PubMed  Google Scholar 

  16. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2019. https://www.R-project.org/.

  17. Nakayama Y, Awai K, Yanaga Y, Nakaura T, Funama Y, Hirai T, et al. Optimal contrast medium injection protocols for the depiction of the Adamkiewicz artery using 64-detector CT angiography. Clin Radiol. 2008;63:880–7. https://doi.org/10.1016/j.crad.2008.01.009.

    Article  CAS  PubMed  Google Scholar 

  18. Machida H, Tanaka I, Fukui R, Kita K, Shen Y, Ueno E, et al. Improved delineation of the anterior spinal artery with model-based iterative reconstruction in CT angiography: a clinical pilot study. AJR Am J Roentgenol. 2013;200:442–6. https://doi.org/10.2214/AJR.11.7826.

    Article  PubMed  Google Scholar 

  19. Higaki T, Awai K. Low-dose technique for chest and abdominal CT examinations. Nichidoku-Iho (in Japanese). 2016;611:41–51.

    Google Scholar 

  20. Utsunomiya D, Yamashita Y, Okuma S, Urata J. Demonstration of the Adamkiewicz artery in patients with descending or thoracoabdominal aortic aneurysm: optimization of contrast-medium application for 64-detector-row CT angiography. Eur J Radiol. 2008;18:2684–90. https://doi.org/10.1007/s00330-008-1036-4.

    Article  Google Scholar 

  21. Bley TA, Duffek CC, Francois CJ, Schieber ML, Acher CW, Mell M, et al. Presurgical localization of the artery of Adamkiewicz with time-resolved 3.0-T MR angiography. Radiology. 2010;255:873–81. https://doi.org/10.1148/radiol.10091304.

    Article  PubMed  Google Scholar 

  22. Takagi H, Ota H, Natsuaki Y, Komori Y, Ito K, Saiki Y, et al. Identifying the Adamkiewicz artery using 3-T time-resolved magnetic resonance angiography: its role in addition to multidetector computed tomography angiography. Jpn J Radiol. 2015;33(12):749–56. https://doi.org/10.1007/s11604-015-0490-6.

    Article  PubMed  Google Scholar 

  23. Yoshioka K, Niinuma H, Ehara S, Nakajima T, Nakamura M, Kawazoe K. MR angiography and CT angiography of the artery of Adamkiewicz: state of the art. RadioGraphics. 2006;26:S63–S73. https://doi.org/10.1148/rg.26si065506.

    Article  PubMed  Google Scholar 

  24. Hassani C, Ronco A, Prosper AE, Dissanayake S, Cen SY, Lee C. Forward-projected model-based iterative reconstruction in screening low-dose chest CT: comparison with adaptive iterative dose reduction 3D. AJR Am J Roentgenol. 2018;211:548–56. https://doi.org/10.2214/AJR.17.19245.

    Article  PubMed  Google Scholar 

  25. Shioyama S, Nishii T, Watanabe Y, Kono AK, Kagawa K, Takahashi S, et al. Advantages of 70-kV CT angiography for the visualization of the Adamkiewicz artery: comparison with 120-kV imaging. AJNR Am J Neuroradiol. 2017;38:2399–405. https://doi.org/10.3174/ajnr.A5372.

    Article  Google Scholar 

  26. Nishii T, Kotoku A, Hori Y, Matsuzaki Y, Watanabe Y, Kono AK, et al. Filtered back projection revisited in low-kilovolt computed tomography angiography: sharp filter kernel enhances visualization of the artery of Adamkiewicz. Neuroradiology. 2019;61:305–11. https://doi.org/10.1007/s00234-018-2136-8.

    Article  PubMed  Google Scholar 

  27. Matsunaga Y, Kawaguchi A, Kobayashi K, Kinomura Y, Kobayashi M, et al. Survey of volume CT dose index in Japan in 2014. Br J Radiol. 2015;88:20150219. https://doi.org/10.1259/bjr.20150219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amato ACM, Parga Filho JR, Stolf NAG. Influential factors on the evaluation of Adamkiewicz artery using a 320-detector row computed tomography device. Ann Vasc Surg. 2017;44:136–45. https://doi.org/10.1016/j.avsg.2017.02.019.

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kamitani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hino, T., Kamitani, T., Sagiyama, K. et al. Detectability of the artery of Adamkiewicz on computed tomography angiography of the aorta by using ultra-high-resolution computed tomography. Jpn J Radiol 38, 658–665 (2020). https://doi.org/10.1007/s11604-020-00943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-020-00943-3

Keywords

Navigation