Skip to main content
Log in

Identifying the Adamkiewicz artery using 3-T time-resolved magnetic resonance angiography: its role in addition to multidetector computed tomography angiography

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study assessed Adamkiewicz artery (AKA) detectability using multidetector computed tomography angiography (MDCTA) and time-resolved magnetic resonance angiography (MRA) at 3 T.

Materials and methods

This Institutional Review Board-approved retrospective study included 117 patients with thoracoabdominal aortic disease scheduled for aortic repair. A total of 111 patients underwent MDCTA for AKA identification; 43 patients whose AKA identification was not definitive on MDCTA underwent additional MRA. The remaining six patients, who were not indicated for iodine-contrast MDCTA, underwent only MRA. Two reviewers independently evaluated both MDCTA and MRA data. The 4-point confidence index was used. Grades 3–4 were considered sufficient for AKA diagnosis.

Results

AKA detectability was at 80.2 % (89/111) using MDCTA and 89.8 % (44/49) with MRA. In the 43 patients who underwent both MDTCA and MRA, the AKA detectability and consensus grades were significantly elevated using MRA vs. MDCTA (detectability: 88.4 vs. 69.8 %, respectively, p = 0.043). AKA detectability was also higher in aortic aneurysm than aortic dissection patients on MDCTA (90.9 vs. 69.6 %, respectively, p < 0.01), but not on MRA (92.9 vs. 88.6 %, respectively, p = 0.99).

Conclusions

Time-resolved MRA at 3 T increases AKA detectability and is recommended for patients without definitive AKA identification on MDCTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koshino T, Murakami G, Morishita K, Mawatari T, Abe T. Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg. 1999;117:898–905.

    Article  PubMed  CAS  Google Scholar 

  2. Takase K, Sawamura Y, Igarashi K, Chiba Y, Haga K, Saito H, et al. Demonstration of the artery of adamkiewicz at multi—detector row helical CT1. Radiology. 2002;223:39–45.

    Article  PubMed  Google Scholar 

  3. Nishii T, Kono A, Negi N, Hashimura H, Uotani K, Okita Y, et al. The feasibility of a 64-slice MDCT for detection of the Adamkiewicz artery: comparison of the detection rate of intravenous injection CT angiography using a 64-slice MDCT versus intra-arterial and intravenous injection CT angiography using a 16-slice MDCT. Int J Cardiovasc Imaging; 2013.

  4. Yamada N, Okita Y, Minatoya K, Tagusari O, Ando M, Takamiya M, et al. Preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography in patients with descending or thoracoabdominal aortic aneurysms. Eur J Cardiothorac Surg. 2000;18:104–11.

    Article  PubMed  CAS  Google Scholar 

  5. Kudo K, Terae S, Asano T, Oka M, Kaneko K, Ushikoshi S, et al. Anterior spinal artery and artery of adamkiewicz detected by using multi-detector row CT. Am J Neuroradiol. 2003;24:13–7.

    PubMed  Google Scholar 

  6. Kawaharada N, Morishita K, Kurimoto Y, Hyodoh H, Ito T, Harada R, et al. Spinal cord ischemia after elective endovascular stent-graft repair of the thoracic aorta. Eur J Cardiothorac Surg. 2007;31:998–1003.

    Article  PubMed  Google Scholar 

  7. Bley TA, Duffek CC, François CJ, Schiebler ML, Acher CW, Mell M, et al. Presurgical Localization of the Artery of Adamkiewicz with time-resolved 3.0-T MR Angiography1. Radiology. 2010;255:873–81.

    Article  PubMed  Google Scholar 

  8. Biglioli P, Spirito R, Roberto M, Grillo F, Cannata A, Parolari A, et al. The anterior spinal artery: the main arterial supply of the human spinal cord—a preliminary anatomic study. J Thorac Cardiovasc Surg. 2000;119:376–9.

    Article  PubMed  CAS  Google Scholar 

  9. Conrad MF, Crawford RS, Davison JK, Cambria RP. Thoracoabdominal aneurysm repair: a 20-year perspective. Ann Thorac Surg. 2007;83:856–61.

    Article  Google Scholar 

  10. Messé SR, Bavaria JE, Mullen M, Cheung AT, Davis R, Augoustides JG, et al. Neurologic outcomes from high risk descending thoracic and thoracoabdominal aortic operations in the era of endovascular repair. Neurocrit Care. 2008;9:344–51.

    Article  PubMed  Google Scholar 

  11. Hanna JM, Andersen ND, Aziz H, Shah AA, McCann RL, Hughes GC. Results with selective preoperative lumbar drain placement for thoracic endovascular aortic repair. Ann Thorac Surg. 2013;95:1968–75.

    Article  PubMed  Google Scholar 

  12. Coselli JS, Bozinovski J, LeMaire SA. Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann Thorac Surg. 2007;83:862–4.

    Article  Google Scholar 

  13. Okita Y, Omura A, Yamanaka K, Inoue T, Kano H, Tanioka R, et al. Open reconstruction of thoracoabdominal aortic aneurysms. Ann Cardiothorac Surg. 2012;1:373–80.

    PubMed  PubMed Central  Google Scholar 

  14. Safi HJ, Miller CC, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1998;27:58–68.

    Article  PubMed  CAS  Google Scholar 

  15. Crawford ES, Svensson LG, Hess KR, Shenaq SS, Coselli JS, Safi HJ, et al. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg. 1991;13:36–46.

    Article  PubMed  CAS  Google Scholar 

  16. Wan IY, Angelini GD, Bryan AJ, Ryder I, Underwood MJ. Prevention of spinal cord ischaemia during descending thoracic and thoracoabdominal aortic surgery. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2001;19:203–13.

    Article  CAS  Google Scholar 

  17. De Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ. Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg. 1997;113:87–101.

    Article  PubMed  Google Scholar 

  18. Cunningham JN, Laschinger JC, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoracoabdominal aorta. IV. Clinical observations and results. J Thorac Cardiovasc Surg. 1987;94:275–85.

    PubMed  Google Scholar 

  19. Wadouh F, Wadouh R, Hartmann M, Crisp-Lindgren N. Prevention of paraplegia during aortic operations. Ann Thorac Surg. 1990;50:543–52.

    Article  PubMed  CAS  Google Scholar 

  20. Kawaharada N, Morishita K, Fukada J, Yamada A, Muraki S, Hyodoh H, et al. Thoracoabdominal or descending aortic aneurysm repair after preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography. Eur J Cardiothorac Surg. 2002;21:970–4.

    Article  PubMed  Google Scholar 

  21. Hachiro Y, Kawaharada N, Morishita K, Fukada J, Fujisawa Y, Kurimoto Y, et al. Thoracoabdominal aortic aneurysm repair after detection of the Adamkiewicz artery by magnetic resonance angiography; a way to shorten operating time and improve outcome. Kyobu Geka. 2004;57:280–3.

    PubMed  CAS  Google Scholar 

  22. Hyodoh H, Kawaharada N, Akiba H, Tamakawa M, Hyodoh K, Fukada J, et al. Usefulness of preoperative detection of artery of adamkiewicz with dynamic contrast-enhanced MR angiography. Radiology. 2005;236:1004–9.

    Article  PubMed  Google Scholar 

  23. Yoshioka K, Niinuma H, Ehara S, Nakajima T, Nakamura M, Kawazoe K. MR angiography and CT angiography of the artery of adamkiewicz: state of the Art1. Radiographics. 2006;26:S63–73.

    Article  PubMed  Google Scholar 

  24. Utsunomiya D, Yamashita Y, Okumura S, Urata J. Demonstration of the Adamkiewicz artery in patients with descending or thoracoabdominal aortic aneurysm: optimization of contrast-medium application for 64-detector-row CT angiography. Eur Radiol. 2008;18:2684–90.

    Article  PubMed  Google Scholar 

  25. Nijenhuis RJ, Mull M, Wilmink JT, Thron AK, Backes WH. MR angiography of the great anterior radiculomedullary artery (adamkiewicz artery) validated by digital subtraction angiography. Am J Neuroradiol. 2006;27:1565–72.

    PubMed  CAS  Google Scholar 

  26. Kane GC, Doyle BJ, Lerman A, Barsness GW, Best PJ, Rihal CS. Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J Am Coll Cardiol. 2008;51:89–90.

    Article  PubMed  Google Scholar 

  27. Stacul F, van der Molen AJ, Reimer P, Webb JAW, Thomsen HS, Morcos SK, et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol. 2011;21:2527–41.

    Article  PubMed  Google Scholar 

  28. Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur Heart J. 2012;33:2007–15.

    Article  PubMed  Google Scholar 

  29. Ledneva E, Karie S, Launay-Vacher V, Janus N, Deray G. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency 1. Radiology. 2009;250:618–28.

    Article  PubMed  Google Scholar 

  30. Perazella MA. Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol. 2009;4:461–9.

    Article  PubMed  CAS  Google Scholar 

  31. Niendorf HP, Haustein J, Cornelius I, Alhassan A, Clauß W. Safety of gadolinium-DTPA: extended clinical experience. Magn Reson Med. 1991;22:222–8.

    Article  PubMed  CAS  Google Scholar 

  32. Krestin GP, Schuhmann-Giampieri G, Haustein J, Friedman G, Neufang KRR, Clauß W, et al. Functional dynamic MRI, pharmacokinetics and safety of Gd-DTPA in patients with impaired renal function. Eur Radiol. 1992;2:16–23.

    Article  Google Scholar 

  33. Machida H, Tanaka I, Fukui R, Kita K, Shen Y, Ueno E, et al. Improved delineation of the anterior spinal artery with model-based iterative reconstruction in CT angiography: a clinical pilot study. Am J Roentgenol. 2013;200:442–6.

    Article  Google Scholar 

  34. Nishida J, Kitagawa K, Nagata M, Yamazaki A, Nagasawa N, Sakuma H. Model-based iterative reconstruction for multi-detector row CT assessment of the adamkiewicz artery. Radiology. 2014;270:282–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Ota.

Ethics declarations

Conflict of interest

All of the authors, except 2, declare that they have no conflict of interests. The third author (Y. N.) is an employee of Siemens Healthcare, CA, USA. The fourth author (Y. K.) is also an employee of Healthcare Sector, Siemens Japan K.K., Tokyo, Japan. This retrospective study was approved by the Institutional Review Board of our institution.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, H., Ota, H., Natsuaki, Y. et al. Identifying the Adamkiewicz artery using 3-T time-resolved magnetic resonance angiography: its role in addition to multidetector computed tomography angiography. Jpn J Radiol 33, 749–756 (2015). https://doi.org/10.1007/s11604-015-0490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-015-0490-6

Keywords

Navigation