Skip to main content
Log in

Involvement of miR-155/FOXO3a and miR-222/PTEN in acquired radioresistance of colorectal cancer cell line

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Finding a novel biomarker for determining the radiosensitivity of colorectal cancer (CRC) is critical. The aim of this study is to evaluate the role of two main miRNAs including miR-222 and miR-155 in radiation response of CRC.

Materials and methods

The radioresistant CRC cell lines were established by exposing the HCT 116 cell line to fractional X-ray radiation. SubG1 fraction analysis, MTT and clonogenic assays were applied to evaluate acquired radioresistant cell line radiosensitivity. miR-222/PTEN and miR-155/FOXO3a expressions were detected by RT PCR.

Results

The clonogenic assay and sub-G1fraction analysis indicated that the RR2 sub-line was significantly more resistant than the parental cell line. MiR-222 and miR-155 were significantly upregulated in the radioresistant cell lines compared with the parental cell lines. The PTEN and FOXO3a expressions in the radioresistant cell lines were significantly higher than in the parental line.

Conclusion

These observations indicate that miR-222 and miR-155 could induce radiation resistance in colorectal cancer by targeting PTEN and FOXO3a genes, respectively. Therefore, miR-222 and miR-155 can be suggested as good biomarkers of CRC radiation response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Y, Zheng L, Huang J, Gao F, Lin X, He L, et al. MiR-124 radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One. 2014;9(4):e93917.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sandur SK, Deorukhkar A, Pandey MK, Pabón AM, Shentu S, Guha S, et al. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-κB activity. Int J Radiat Oncol Biol Phys. 2009;75(2):534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13(1):1.

    Article  Google Scholar 

  4. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Das P, Skibber JM, Rodriguez-Bigas MA, Feig BW, Chang GJ, Wolff RA, et al. Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer. 2007;109(9):1750–5.

    Article  CAS  PubMed  Google Scholar 

  6. Kremser C, Trieb T, Rudisch A, Judmaier W, de Vries A. Dynamic T1 mapping predicts outcome of chemoradiation therapy in primary rectal carcinoma: sequence implementation and data analysis. J Magn Reson Imaging. 2007;26(3):662–71.

    Article  PubMed  Google Scholar 

  7. Jiang S, Wang R, Yu J, Zhu K, Mu D, Xu Z. Correlation of VEGF and Ki67 expression with sensitivity to neoadjuvant chemoradiation in rectal adenocarcinoma. Zhonghua zhong liu za zhi. 2008;30(8):602–5 (Chinese Journal of Oncology).

    CAS  PubMed  Google Scholar 

  8. Colibaseanu DT, Mathis KL, Abdelsatter ZM, Larson DW, Haddock MG, Dozois EJ. Is curative resection and long-term survival possible for locally re-recurrent colorectal cancer in the pelvis? Dis Colon Rectum. 2013;56(1):14–9.

    Article  PubMed  Google Scholar 

  9. Corté H, Manceau G, Blons H, Laurent-Puig P. MicroRNA and colorectal cancer. Dig Liver Dis. 2012;44(3):195–200.

    Article  PubMed  Google Scholar 

  10. Yang L, Belaguli N, Berger DH. MicroRNA and colorectal cancer. World J Surg. 2009;33(4):638–46.

    Article  PubMed  Google Scholar 

  11. Ma W, Yu J, Qi X, Liang L, Zhang Y, Ding Y, et al. Radiation-induced microRNA-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget. 2015;6(18):15984.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci. 2016;17(12):1987.

    Article  PubMed Central  Google Scholar 

  13. Lin R-J, Lin Y-C, Chen J, Kuo H-H, Chen Y-Y, Diccianni MB, et al. MicroRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 2010;70(20):7841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacFarlane L-A, Murphy RP. MicroRNA: biogenesis, function and role in cancer. Curr Genom. 2010;11(7):537–61.

    Article  CAS  Google Scholar 

  15. Zhao L, Lu X, Cao Y. MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal. 2013;25(7):1625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joye I, Haustermans K, editors. Which patients with rectal cancer do not need radiotherapy? Seminars in radiation oncology. Amsterdam: Elsevier; 2016.

    Google Scholar 

  17. Agostini M, Crotti S, Bedin C, Cecchin E, Maretto I, D’Angelo E, et al. Predictive response biomarkers in rectal cancer neoadjuvant treatment. Front Biosci. 2014;6:110–9.

    Article  Google Scholar 

  18. Chun-zhi Z, Lei H, An-ling Z, Yan-chao F, Xiao Y, Guang-xiu W, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10(1):1.

    Article  Google Scholar 

  19. Jurkovicova D, Magyerkova M, Kulcsar L, Krivjanska M, Krivjansky V, Gibadulinova A, et al. MiR-155 as a diagnostic and prognostic marker in hematological and solid malignancies. Neoplasma. 2014;61(3):241–51.

    Article  CAS  PubMed  Google Scholar 

  20. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, DeGraff W, et al. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One. 2009;4(7):e6377.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, et al. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys. 2011;80(2):549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vincenti S, Brillante N, Lanza V, Bozzoni I, Presutti C, Chiani F, et al. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat Res. 2011;175(5):535–46.

    Article  CAS  PubMed  Google Scholar 

  23. Chaudhry MA, Omaruddin RA, Kreger B, de Toledo SM, Azzam EI. Micro RNA responses to chronic or acute exposures to low dose ionizing radiation. Mol Biol Rep. 2012;39(7):7549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 2010;29(9):553–61.

    Article  CAS  PubMed  Google Scholar 

  25. Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci. 2014;111(12):4536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su H, Jin X, Zhang X, Xue S, Deng X, Shen L, et al. Identification of microRNAs involved in the radioresistance of esophageal cancer cells. Cell Biol Int. 2014;38(3):318–25.

    Article  CAS  PubMed  Google Scholar 

  27. Nikzad S, Hashemi B. MTT assay instead of the clonogenic assay in measuring the response of cells to ionizing radiation. J Radiobiol. 2014;1(1):3–8.

    Google Scholar 

  28. Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11.

    CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  30. Riffo-Campos AL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: What to choose? Int J Mol Sci. 2016;17(12):1987.

    Article  PubMed Central  Google Scholar 

  31. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18(10):1139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10(10):1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin J-B. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem. 2009;284(16):10334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anastasov N, Hofig I, Vasconcellos IG, Rappl K, Braselmann H, Ludyga N, et al. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol. 2012;7:206.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang XD, Xu XH, Zhang SY, Wu Y, Xing CG, Ru G, et al. Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res. 2015;5(2):545–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang MY, Wang JY, Chang HJ, Kuo CW, Tok TS, Lin SR. CDC25A, VAV1, TP73, BRCA1 and ZAP70 gene overexpression correlates with radiation response in colorectal cancer. Oncol Rep. 2011;25(5):1297–306.

    CAS  PubMed  Google Scholar 

  38. Chendil D, Oakes R, Alcock RA, Patel N, Mayhew C, Mohiuddin M, et al. Low dose fractionated radiation enhances the radiosensitization effect of paclitaxel in colorectal tumor cells with mutant p53. Cancer. 2000;89(9):1893–900.

    Article  CAS  PubMed  Google Scholar 

  39. Matsuzaki J, Suzuki H. Role of microRNAs-221/222 in digestive systems. J Clin Med. 2015;4(8):1566–77.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang X-D, Xu X-H, Zhang S-Y, Wu Y, Xing C-G, Ru G, et al. Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res. 2015;5:545–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ge H, Cao Y, Chen L, Wang Y, Chen Z, Wen D, et al. PTEN polymorphisms and the risk of esophageal carcinoma and gastric cardiac carcinoma in a high incidence region of China. Dis Esophagus. 2008;21(5):409–15.

    Article  CAS  PubMed  Google Scholar 

  42. Cinti C, Vindigni C, Zamparelli A, La Sala D, Epistolato MC, Marrelli D, et al. Activated Akt as an indicator of prognosis in gastric cancer. Virchows Arch. 2008;453(5):449–55.

    Article  CAS  PubMed  Google Scholar 

  43. Pappas G, Zumstein L, Munshi A, Hobbs M, Meyn R. Adenoviral-mediated PTEN expression radiosensitizes non-small cell lung cancer cells by suppressing DNA repair capacity. Cancer Gene Ther. 2007;14(6):543–9.

    Article  CAS  PubMed  Google Scholar 

  44. He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet. 2007;39(2):189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qiao Y, Badduke C, Mercier E, Lewis SM, Pavlidis P, Rajcan-Separovic E. miRNA and miRNA target genes in copy number variations occurring in individuals with intellectual disability. BMC Genom. 2013;14(1):544.

    Article  CAS  Google Scholar 

  46. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–17.

    Article  CAS  PubMed  Google Scholar 

  47. Gironella M, Seux M, Xie M-J, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci. 2007;104(41):16170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  49. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  50. Chaudhry MA, Kreger B, Omaruddin RA. Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int J Radiat Biol. 2010;86(7):569–83.

    Article  CAS  PubMed  Google Scholar 

  51. Chaudhry MA, Omaruddin RA, Brumbaugh CD, Tariq MA, Pourmand N. Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. J Radiat Res. 2013;54(5):808–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Mattos SF, Villalonga P, Clardy J, Lam EW. FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol Cancer Ther. 2008;7(10):3237–46.

    Article  PubMed Central  Google Scholar 

  53. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  54. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  Google Scholar 

  55. Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, et al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 2011;71(8):3098–109.

    Article  CAS  PubMed  Google Scholar 

  56. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  CAS  PubMed  Google Scholar 

  57. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oravecz-Wilson KI, Philips ST, Yilmaz ÖH, Ames HM, Li L, Crawford BD, et al. Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder. Cancer Cell. 2009;16(2):137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang L, Graham PH, Hao J, Bucci J, Cozzi PJ, Kearsley JH, et al. Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev. 2014;33(2–3):469–96.

    Article  CAS  PubMed  Google Scholar 

  62. Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F. Radiation-induced reprogramming of breast cancer cells. Stem Cells. 2012;30(5):833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study has been adapted from MSc and PhD theses at Hamadan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Saidijam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The study was funded by Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences (Nos. 9412257365 and 9411136348).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshinani, H.M., Afshar, S., Pashaki, A.S. et al. Involvement of miR-155/FOXO3a and miR-222/PTEN in acquired radioresistance of colorectal cancer cell line. Jpn J Radiol 35, 664–672 (2017). https://doi.org/10.1007/s11604-017-0679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-017-0679-y

Keywords

Navigation