Skip to main content

Advertisement

Log in

Neurite orientation dispersion and density imaging for evaluation of corticospinal tract in idiopathic normal pressure hydrocephalus

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate diffusional changes of the corticospinal tract (CST) in patients with idiopathic normal pressure hydrocephalus (iNPH) by neurite orientation dispersion and density imaging (NODDI).

Materials and methods

Nineteen patients with iNPH and 12 healthy controls were included. Diffusion MRI data for NODDI were acquired with a 3-T system, using 32 motion-probing gradient directions with six b-values (from 0 to 2500 s/mm2). The orientation dispersion index (ODI), intra-cellular volume fraction (Vic), and isotropic volume fraction (Viso) of the CST were calculated by tract-specific analysis in patients and controls. We also measured the fractional anisotropy (FA) and apparent diffusion coefficient (ADC).

Results

The ODI of the CST (0.087 ± 0.024 vs. 0.183 ± 0.051, P < 0.01, Mann-Whitney U test) and Vic of the CST (0.551 ± 0.061 vs. 0.628 ± 0.038, P < 0.01, Mann-Whitney U test) were significantly lower in iNPH patients than in healthy controls. In receiver-operating characteristic analysis, the area under the curve (AUC) of the ODI and FA were not significantly different (Fig. 4a, 0.987 vs. 0.904, P = 0.061), and the AUC of the Vic and ADC also showed no significant difference (Fig. 4b, 0.864 vs. 0.912, P = 0.194).

Conclusion

The NODDI can effectively evaluate the condition of neurites in the CST of iNPH patients, and the ODI could be clinically useful in the diagnosis of iNPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med. 1965;273:117–26.

    Article  CAS  Google Scholar 

  2. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965;2(4):307–27.

    Article  CAS  Google Scholar 

  3. Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, et al. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102(6):987–97.

    Article  Google Scholar 

  4. Meier U, Lemcke J. Clinical outcome of patients with idiopathic normal pressure hydrocephalus three years after shunt implantation. Acta Neurochir Suppl. 2006;96:377–80.

    Article  CAS  Google Scholar 

  5. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70(3):289–97.

    Article  CAS  PubMed Central  Google Scholar 

  6. Akai K, Uchigasaki S, Tanaka U, Komatsu A. Normal pressure hydrocephalus. Neuropathological study. Acta Pathol Jpn. 1987;37(1):97–110.

    CAS  Google Scholar 

  7. Krauss JK, Regel JP, Vach W, Droste DW, Borremans JJ, Mergner T. Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke. 1996;27(1):24–9.

    Article  CAS  Google Scholar 

  8. Assaf Y, Ben-Sira L, Constantini S, Chang LC, Beni-Adani L. Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol. 2006;27(8):1717–24.

    CAS  Google Scholar 

  9. Jang SH, Ho Kim S. Diffusion tensor imaging following shunt in a patient with hydrocephalus. J Neuroimaging. 2011;21(1):69–72.

    Article  Google Scholar 

  10. Scheel M, Diekhoff T, Sprung C, Hoffmann KT. Diffusion tensor imaging in hydrocephalus—findings before and after shunt surgery. Acta Neurochir (Wien). 2012;154(9):1699–706.

    Article  Google Scholar 

  11. Jurcoane A, Keil F, Szelenyi A, Pfeilschifter W, Singer OC, Hattingen E. Directional diffusion of corticospinal tract supports therapy decisions in idiopathic normal-pressure hydrocephalus. Neuroradiology. 2014;56(1):5–13.

    Article  PubMed  Google Scholar 

  12. Kim MJ, Seo SW, Lee KM, Kim ST, Lee JI, Nam DH, et al. Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(8):1496–503.

    Article  CAS  PubMed  Google Scholar 

  13. Hattori T, Ito K, Aoki S, Yuasa T, Sato R, Ishikawa M, et al. White matter alteration in idiopathic normal pressure hydrocephalus: tract-based spatial statistics study. AJNR Am J Neuroradiol. 2012;33(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  14. Nakanishi A, Fukunaga I, Hori M, Masutani Y, Takaaki H, Miyajima M, et al. Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging. Neuroradiology. 2013;55(8):971–6.

    Article  PubMed  Google Scholar 

  15. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000–16.

    Article  PubMed  Google Scholar 

  16. Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo). 2012; 52(11):775–809.

  17. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36(3):630–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48(3):452–8.

    Article  CAS  Google Scholar 

  19. Nilsson M, Latt J, Stahlberg F, van Westen D, Hagslatt H. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed. 2012;25(5):795–805.

    Article  PubMed  Google Scholar 

  20. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC. Multi-compartment microscopic diffusion imaging. Neuroimage. 2016;139:346–59.

    Article  PubMed  Google Scholar 

  21. Billiet T, Madler B, D’Arco F, Peeters R, Deprez S, Plasschaert E, et al. Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin. 2014;4:649–58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Timmers I, Zhang H, Bastiani M, Jansma BM, Roebroeck A, Rubio-Gozalbo ME. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging. J Inherit Metab Dis. 2015;38(2):295–304.

    Article  PubMed  Google Scholar 

  23. Kamiya K, Hori M, Miyajima M, Nakajima M, Suzuki Y, Kamagata K, et al. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging. PLoS One. 2014;9(8):e103842.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cohen Y, Assaf Y. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues—a technical review. NMR Biomed. 2002;15(7–8):516–42.

    Article  PubMed  Google Scholar 

  25. Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11(4):221–33.

    Article  PubMed  Google Scholar 

  26. Ong HH, Wehrli FW. Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging. Neuroimage. 2010;51(4):1360–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a Research Grant from the Ministry of Health, Labor and Welfare of Japan (2014-Nanchi-General-052), supported by the program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development and funded by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryusuke Irie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irie, R., Tsuruta, K., Hori, M. et al. Neurite orientation dispersion and density imaging for evaluation of corticospinal tract in idiopathic normal pressure hydrocephalus. Jpn J Radiol 35, 25–30 (2017). https://doi.org/10.1007/s11604-016-0594-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-016-0594-7

Keywords

Navigation