Skip to main content

Advertisement

Log in

Serial diffusion tensor imaging to characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas

  • Original Article
  • Published:
Radiation Medicine Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to ascertain whether diffusion tensor imaging (DTI) metrics—fractional anisotropy (FA), mean diffusivity (MD), linear case (CL), planar case (CP), spherical case (CS)—can characterize a threshold dose and temporal evolution of changes in normal-appearing white matter (NAWM) of adults with low-grade gliomas (LGGs) treated with radiation therapy (RT).

Methods and materials

Conventional and DTI imaging were performed before RT in 5 patients and subsequently, on average, at 3 months (n = 5), 8 months (n = 3), and 14 months (n = 5) following RT for a total of 18 examinations. Isodose distribution at 5-Gy intervals were visualized in all the slices of fluid attenuated inversion recovery (FLAIR) and the corresponding DTI images without diffusion sensitization (b0DTI). The latter were exported for relative quantitative analysis.

Results

Compared to pre-RT values, FA and CL decreased, whereas CS increased at 3 and 8 months and recovered partially at 14 months for the dose bins > 55 Gy and 50–55 Gy. For the 45–50 Gy bin, the FA and CL decreased with an increase in CS at 3 months; no further change was seen at 8 or 14 months. For the >55 Gy and 50–55 Gy bins, CP decreased and MD increased at 3 months and returned to baseline at 8 months following RT.

Conclusion

Radiation-induced changes in NAWM can be detected at 3 months after RT, with changes in FA, CL, and CS (but not CP or MD) values seen at a thresh-old dose of 45–50 Gy. A partial recovery was evident by 14 months to regions that received doses of 50–55 Gy and >55 Gy, thus providing an objective measure of radiation effect on NAWM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schultheiss TE, Kun LE, Ang KK, Stephens LC. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 1995;31:1093–1112.

    PubMed  CAS  Google Scholar 

  2. Fike JR, Gobbel GT. Central nervous system radiation injury in large animal models. In: Gutin PH, Leibel SA, Sheline GE, editors. Radiation injury to the nervous system. New York: Raven; 1991. p. 113–135.

    Google Scholar 

  3. Zeman W, Samorajski T. Effects of irradiation on the nervous system. In: de Berdjis CC, editor. Pathology of irradiation. Baltimore: Williams & Wilkins; 1971. p. 213–277.

    Google Scholar 

  4. Bailey OT. Basic problems in the histopathology of radiation of the central nervous system. In: Haley TJ, Snider RS, editors. Response of the nervous system to ionizing radiation. San Diego: Academic; 1962. p. 536–547.

    Google Scholar 

  5. Martins AN, Johnston JS, Henry JM, Stoffel TJ, Di Chiro G. Delayed necrosis of the brain. J Neurosurg 1977;47:336–345.

    PubMed  CAS  Google Scholar 

  6. Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH. Brain radiation lesions: MR imaging. Radiology 1986;158:149–155.

    PubMed  CAS  Google Scholar 

  7. Constine LS, Konski A, Ekholm S, McDonald S, Rubin P. Adverse effects of brain irradiation correlated with MR and CT imaging. Int J Radiat Oncol Biol Phys 1988;15:319–330.

    Article  PubMed  CAS  Google Scholar 

  8. Corn BW, Yousem DM, Scott CB, Rotman M, Asbell SO, Nelson DF, et al. White matter changes are correlated significantly with radiation dose. Cancer 1994;74:2828–2835.

    Article  PubMed  CAS  Google Scholar 

  9. Jansen EP, Dewit LG, van Herk M, Bartelink H. Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 2000;56:151–156.

    Article  PubMed  CAS  Google Scholar 

  10. Pu AT, Sandler HM, Radany EH, Blavias M, Page MA, Greenberg HS, et al. Low grade gliomas: preliminary analysis of failure patterns among patients treated using 3D conformal external beam irradiation. Int J Radiat Oncol Biol Phys 1995;31:461–466.

    PubMed  CAS  Google Scholar 

  11. Curnes JT, Laster DW, Ball MR, Moody DM, Witcofski RL. MR of radiation injury to the brain. AJR Am J Roentgenol 1986;147:119–124.

    PubMed  CAS  Google Scholar 

  12. Gupta RK, Saksena S, Hasan KM, Agarwal A, Haris M, Pandey CM, et al. Focal Wallerian degeneration of the corpus callosum in large middle cerebral artery stroke: serial diffusion tensor imaging. J Magn Reson Imaging 2006;24:549–555.

    Article  PubMed  Google Scholar 

  13. Gupta RK, Saksena S, Agarwal A, Hasan KM, Husain M, Gupta V, et al. Diffusion tensor imaging in late posttraumatic epilepsy. Epilepsia 2005;46:1465–1471.

    Article  PubMed  Google Scholar 

  14. Trivedi R, Gupta RK, Agarawal A, Hasan KM, Gupta A, Prasad KN, et al. Assessment of white matter damage in subacute sclerosing panencephalitis using quantitative diffusion tensor MRI. Am J Neuroradiol 2006;27:1712–1716.

    PubMed  CAS  Google Scholar 

  15. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534–546.

    Article  PubMed  Google Scholar 

  16. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003;6:469–480.

    Article  CAS  Google Scholar 

  17. Khong PL, Kwong DL, Chan GC, Sham JS, Chan FL, Ooi GC. Diffusion-tensor imaging for the detection and quantification of treatment-induced white matter injury in children with medulloblastoma: a pilot study. Am J Neuroradiol 2003;24:734–740.

    PubMed  Google Scholar 

  18. Kitahara S, Nakasu S, Murata K, Sho K, Ito R. Evaluation of treatment-induced cerebral white matter injury by using diffusion-tensor MR imaging: initial experience. Am J Neuroradiol 2005;26:2200–2206.

    PubMed  Google Scholar 

  19. Qiu D, Kwong DL, Chan GC, Leung LH, Khong PL. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys 2007;69:846–851.

    PubMed  Google Scholar 

  20. Qiu D, Leung LH, Kwong DL, Chan GC, Khong PL. Mapping radiation dose distribution on the fractional anisotropy map: applications in the assessment of treatment-induced white matter injury. Neuroimage 2006;31:109–115.

    Article  PubMed  Google Scholar 

  21. Westin CF, Peled S, Gubjartsson H, Kikinis R, Jolesz FA. Geometrical diffusion measures for MRI from tensor basis analysis. Vancouver, Canada: International Society of Magnetic Resonance in Medicine; 1997. p. 1742.

    Google Scholar 

  22. Peled S, Gudbjartsson H, Westin CF, Kikinis R, Jolesz FA. Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts. Brain Res 1998;780:27–33.

    Article  PubMed  CAS  Google Scholar 

  23. Alexander AL, Hasan K, Kindlmann G, Parker DL, Tsuruda JS. A geometric analysis of diffusion tensor measurements of the human brain. Magn Reson Med 2000;44:283–291.

    Article  PubMed  CAS  Google Scholar 

  24. Baser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995;8:333–344.

    Article  Google Scholar 

  25. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 2001;13:769–780.

    Article  PubMed  CAS  Google Scholar 

  26. Hasan KM, Narayana PA. Computation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: theoretical analysis and validation. Magn Reson Med 2003;50:589–598.

    Article  PubMed  Google Scholar 

  27. Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated algorithm. J Comput Assist Tomogr 1993;17:536–546.

    Article  PubMed  CAS  Google Scholar 

  28. Purwar A, Gupta RK, Sarma MK, Bayu G, Singh A, Rathore DK, et al. De-scalping of the brain in echo planar DT-MRI. Presented at the 14th International Society of Magnetic Resonance in Medicine, Seattle, 2006, abstract 1607.

  29. Hasan KM, Basar PJ, Parkar DL, Alexander AL. Analytical computation of the eigen values and eigenvectors in DT-MRI. J Magn Reson 2001;152:41–47.

    Article  PubMed  CAS  Google Scholar 

  30. Purwar A, Rathore DK, Rathore RKS, Gupta RK. A DT-MRI analysis tool. Presented at the European Society of Magnetic Resonance in Medicine and Biology, Warsaw, Poland, 2006, abstract 644.

  31. Jalali R, Goswami S, Sarin R, More N, Siddha M, Kamble R. Neuropsychological status in children and young adults with benign and low-grade brain tumors treated prospectively with focal stereotactic conformal radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:S14–S19.

    Google Scholar 

  32. Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys 1995;31:983–998.

    PubMed  CAS  Google Scholar 

  33. Gregor A, Cull A, Traynor E, Stewart M, Lander F, Love S. Neuropsychometric evaluation of long-term survivors of adult brain tumours: relationship with tumour and treatment parameters. Radiother Oncol 1996;41:55–59.

    PubMed  CAS  Google Scholar 

  34. Crossen JR, Garwood D, Glatstein E, Neuwelt EA. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation induced encephalopathy. J Clin Oncol 1994;12:627–642.

    PubMed  CAS  Google Scholar 

  35. Steen RG, Koury BSM, Granja CI, Xiong X, Wu S, Glass JO, et al. Effect of ionizing radiation on the human brain: white matter and gray matter T1 in pediatric brain tumor patients treated with conformal radiotherapy. Int J Radiat Oncol Biol Phys 2001;49:79–91.

    PubMed  CAS  Google Scholar 

  36. Van der Kogel AJ. Central nervous system radiation injury in small animal models. In: Gutin PH, Leibel SA, Sheline GE, editors. Radiation injury to the nervous system. New York: Raven; 1991 p. 91–111.

    Google Scholar 

  37. Delattre JY, Rosenblum MK, Thaler HT, Mandell L, Shapiro WR, Posner JB. A model of radiation myelopathy in the rat: pathology, regional capillary permeability changes and treatment with dexamethasone. Brain 1988;111:1319–1336.

    Article  PubMed  Google Scholar 

  38. Caveness WF, Tanaka A, Hess KH, Kemper TL, Tso MO, Zimmerman LE. Delayed brain swelling and functional dear-rangement after X-irradiation of the right visual cortex in the Macaca mulatta. Radiat Res 1974;57:104–120.

    Article  PubMed  CAS  Google Scholar 

  39. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001;56:304–311.

    PubMed  CAS  Google Scholar 

  40. Beaulieu C. The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 2002;15:435–455.

    Article  PubMed  Google Scholar 

  41. Caveness WF, Carsten AL, Roizin L. Pathogenesis of X-irradiation effects in the monkey cerebral cortex. Brain Res 1968;7:1–117.

    Article  Google Scholar 

  42. Groothius DR, Wright DC, Ostertag CB. The effect of 125I interstitial radiotherapy on blood brain barrier function in normal canine brain. J Neurosurg 1987;67:895–902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Gupta.

About this article

Cite this article

Haris, M., Kumar, S., Raj, M.K. et al. Serial diffusion tensor imaging to characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas. Radiat Med 26, 140–150 (2008). https://doi.org/10.1007/s11604-007-0209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-007-0209-4

Key words

Navigation