Skip to main content
Log in

A new regard on the tectonic map of the Arabian–African region inferred from the satellite gravity analysis

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Satellite gravimetry is a powerful and reliable tool for regional tectono-geodynamic zonation. The studied region contains intricate geodynamical features (high seismological indicators, active rift systems and collision processes), richest structural arrangement (existence of mosaic blocks of oceanic and continental Earth’s crust of various age), and a number of high-amplitude gravity anomalies and complex magnetic pattern. The most hydrocarbon reserves of the world and other important economic deposits occur in this region. Comprehensive analysis of satellite gravity data with application of different approaches was used to develop a sequence of maps specifying crucial properties of the region deep structure. Careful examination of numerous geological sources and their combined examination with satellite gravity (main), magnetic, GPS, seismic, seismological and some other geophysical data enabled to develop a new tectonic map of the Arabian–African region. Integrated analysis of series of gravity map transformations and certain geological indicators allowed to reveal significant geodynamic features of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agard P, Omrani G, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monie P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148(5–6):692–725

    Article  Google Scholar 

  • Aleinikov AL, Belikov VT, Eppelbaum LV (2001) Some physical foundations of geodynamics. Kedem Printing-House, Tel Aviv

    Google Scholar 

  • Alizadeh AA, Guliyev IS, Kadirov FA, Eppelbaum LV (2016) Geosciences of Azerbaijan, vol I & II. Springer, Heidelberg

    Google Scholar 

  • Al-Juboury A, Al-Hadidy A (2008) Facies and depositional environments of the Devonian–Carboniferous succession of Iraq. Geol J 43:383–396

    Article  Google Scholar 

  • Alsharhan AS, Nairn AEM (2004) Sedimentary basins and petroleum geology of the Middle East. Elsevier, Amsterdam

    Google Scholar 

  • Andersen OB, Knudsen P, Berry PAM (2009) The DNSC-08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199

    Article  Google Scholar 

  • Bastow ID, Keir D, Daly E (2011) The Ethiopia Afar Geoscientific Experiment (EAGLE): probing the transition from continental rifting to incipient seafloor spreading. In: Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and evolution of the African lithosphere, the geological society of America special. p 51–76

  • Ben-Avraham Z, Ginzburg A, Makris J, Eppelbaum L (2002) Crustal structure of the Levant basin, Eastern Mediterranean. Tectonophysics 346:23–43

    Article  Google Scholar 

  • Ben-Avraham Z, Schattner U, Lazar M, Hall JK, Ben-Gai Y, Neev D, Reshef M (2006) Segmentation of the Levant continental margin, Eastern Mediterranean. Tectonics 25(TC5002):1–17

    Google Scholar 

  • Bordenave ML (2008) The origin of the Permo-Triassic gas accumulations in the Iranian Zagros foldbelt and contiguous offshore areas: a review of the Paleozoic petroleum system. J Pet Geol 31(1):3–42

    Article  Google Scholar 

  • Boschetti F, Dentith MC, List RD (1997) Inversion of potential field data by genetic algorithms. Geophys Prospect 45(3):461–478

    Article  Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43:334–378

    Article  Google Scholar 

  • Braitenberg C, Ebbing J (2009) New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data. J Geophys Res 114(B06402):1–15

    Google Scholar 

  • Camelbeeck T, Iranga MD (1996) Deep crustal earthquakes and active faults along the Rukwa trough, Eastern Africa. Geophys J Int 124:612–630

    Article  Google Scholar 

  • Davis GL (1977) The ages and uranium contents of zircons from kimberlites and associated rocks. Carnegie Inst Wash Yearb 76:631–635

    Google Scholar 

  • Davis PM, Slack PD (2002) The uppermost mantle beneath the Kenya dome and relation to melting, rifting and uplift in East Africa. Geophys Res Lett 29(7):1117,1–4

  • Eppelbaum LV (2014) Estimating informational content in geophysical observations on example of searching economic minerals in Azerbaijan. Izv Acad Sci Azerb Rep Ser Earth Sci 3–4:31–40

    Google Scholar 

  • Eppelbaum LV (2015a) Comparison of 3D integrated geophysical modeling in the south Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan tectonic belt. Izv Acad Sci Azerb Rep Ser Earth Sci 3:25–45

    Google Scholar 

  • Eppelbaum LV (2015b) Quantitative interpretation of magnetic anomalies from bodies approximated by thick bed models in complex environments. Environ Earth Sci 74:5971–5988

    Article  Google Scholar 

  • Eppelbaum L, Ben-Avraham Z, Itkis S (2003) Ancient Roman remains in Israel provide a challenge for physical–archaeological modeling techniques. First Break 21(2):51–61

    Google Scholar 

  • Eppelbaum L, Ben-Avraham Z, Katz Y (2004) Integrated analysis of magnetic, paleomagnetic and K–Ar data in a tectonic complex region: an example from the sea of Galilee. Geophys Res Lett 31(19):L196022004, 1-4

  • Eppelbaum LV, Katz YuI (2011) Tectonic-geophysical mapping of Israel and the Eastern Mediterranean: implications for hydrocarbon prospecting. Positioning 2(1):36-54

    Article  Google Scholar 

  • Eppelbaum LV, Katz YI (2012a) Mineral deposits in Israel: a contemporary view. In: Ya’ari A, Zahavi ED (eds) Israel: social, economic and political developments. Nova Science Publishers, NY, pp 1–41

    Google Scholar 

  • Eppelbaum LV, Katz YI (2012b) Key features of seismo–neotectonic pattern of the Eastern Mediterranean. Izv Acad Sci Azerb Rep Ser Earth Sci 3:29–40

    Google Scholar 

  • Eppelbaum LV, Katz YuI (2015a) Newly developed paleomagnetic map of the easternmost Mediterranean unmasks geodynamic history of this region. Cent Eur J Geosci (Open Geosci) 7(1):95–117

    Google Scholar 

  • Eppelbaum LV, Katz YI (2015b) Paleomagnetic mapping in various areas of the easternmost Mediterranean based on an integrated geological–geophysical analysis. In: Eppelbaum L (ed) New developments in paleomagnetism research, ser: Earth Sciences in the 21st century. Nova Science Publisher, NY, pp 15–52

    Google Scholar 

  • Eppelbaum LV, Katz YuI (2015c) Eastern Mediterranean: combined geological–geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Mar Pet Geol 65:198–216

    Article  Google Scholar 

  • Eppelbaum LV, Katz YuI (2016) Tectono-geophysical zonation of the near and middle east and Eastern Africa. Int J Geol 10:1–10

    Google Scholar 

  • Eppelbaum LV, Katz YI (2017) Satellite gravity transforms unmask tectonic pattern of Arabian–African Region. Trans of the 13th EUG Meeting, Geophysical research abstracts, vol. 19, EGU2017-2908. Vienna, Austria, p 1–4

  • Eppelbaum LV, Katz YI, Ben-Avraham Z (2012) Israel—petroleum geology and prospective provinces. AAPG Eur Newslett 4:4–9

    Google Scholar 

  • Eppelbaum LV, Khesin BE (2012) Geophysical studies in the Caucasus. Springer, Heidelberg

    Book  Google Scholar 

  • Eppelbaum LV, Kutasov IM, Pilchin AN (2014) Applied geothermics. Springer, Heidelberg

    Book  Google Scholar 

  • Eppelbaum LV, Mishne AR (2011) Unmanned airborne magnetic and VLF investigations: effective geophysical methodology of the near future. Positioning 2(3):112–133

    Article  Google Scholar 

  • Eppelbaum LV, Pilchin AN (2006) Methodology of Curie discontinuity map development for regions with low thermal characteristics: an example from Israel. Earth Planet Sci Lett 243(3–4):536–551

    Article  Google Scholar 

  • Eppelbaum LV, Vaksman VL, Kouznetsov SV, Sazonova LM, Smirnov SA, Surkov AV, Bezlepkin B, Katz Y, Korotaeva NN, Belovitskaya G (2006) Discovering of microdiamonds and minerals-satellites in Canyon Makhtesh Ramon (Negev desert, Israel). Dokl Earth Sci 407(2):202–204

    Article  Google Scholar 

  • Gaina C, Torsvik TH, van Hinsbergen DJJ, Medvedev S, Werner SC, Labails C (2013) The African Plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics 604:4–25

    Article  Google Scholar 

  • Gass IG (1968) Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220(5162):39–42

    Article  Google Scholar 

  • Gass IG, Masson-Smith D (1963) The geology and gravity anomalies of the Troodos Massif, Cyprus. Philos Trans R Soc Lond Ser A Math Phys Sci 255:417–466

    Article  Google Scholar 

  • Glennie KW, Clarke MWH, Boeuf MGA, Pilaar WFH, Reinhardt BM (1990) Inter-relationship of Makran–Oman Mountains belts of convergence. In: Robertson AHF, Searle MP, Ries AC (eds) The geology and tectonics of the Oman Region. Geological Society, Special Publications, London, pp 773–786

    Google Scholar 

  • Globig J, Fernandez M, Torne M, Verges J, Robert A, Facenna C (2016) New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. J Geophys Res Solid Earth. doi:10.1002/2016JB012972

    Google Scholar 

  • Gripp A, Gordon R (2002) Young tracts of hotspots and current plate velocities. Geophys J Int 150:321–364

    Article  Google Scholar 

  • Grushinsky NP (1976) The theory of the Earth shape. Nauka, Moscow (in Russian)

    Google Scholar 

  • Hall JK, Krasheninnikov VA, Hirsch F, Benjamini C, Flexer A (eds) (2005) Geological framework of the Levant, volume II: the Levantine Basin and Israel. Jerusalem

  • Hansen SE, Rodgers AJ, Schwartz SY, Al-Amri AMS (2007) Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth Planet Sci Lett 259:256–265

    Article  Google Scholar 

  • Hirt C, Gruber T, Featherstone W (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geod 85:723–740

    Article  Google Scholar 

  • Jahne B, Scharr H, Korkel S (1999) Principles of filter design. Handbook of computer vision and applications. Academic Press, Dublin

    Google Scholar 

  • Jimenez-Munt I, Sabadini R, Gardi A (2006) Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data. J Geophys Res 108(B1):1–24

    Google Scholar 

  • Jin-Yu Y, Xun-Hua Z, Fei-Fei Z, Bo H, Zhen-Xing T (2014) Preparation of the free-air gravity anomaly map in the seas of China and adjacent areas using multi-source gravity data and interpretation of the gravity field. Chin J Phys 57(6):872–884

    Google Scholar 

  • Johnson PR (1998) Tectonic map of Saudi Arabia and adjacent areas. Deputy Ministry for Mineral Resources, USGS-TR-98-3, Saudi Arabia

  • Johnson PR, Kattan FH (2008) Lithostratigraphic revision in the Arabian shield: the impacts of geochronology and tectonic analysis. Arab J Sci Eng 33(1):3–16

    Google Scholar 

  • Johnson PR, Kattan FH, Al-Saleh AM (2008) Chapter 4, Neoproterozoic ophiolites in the Arabian shield: field relations and structure. In: Kusky TM (ed) Precambrian ophiolites and related rocks, developments in Precambrian geology. p 129–162

  • Khain VE (2001) Tectonics of continents and oceans. Scientific World, Moscow (in Russian)

    Google Scholar 

  • Khesin BE, Alexeyev VV, Eppelbaum LV (1996) Interpretation of geophysical fields in complicated environments. Kluwer Academic Publishers (Springer), Ser modern approaches in geophysics, Boston, Dordrecht, London

  • Klokočník J, Kostelecký J, Eppelbaum L, Bezděk A (2014) Gravity disturbances, the Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. J Earth Sci Res 2(3):88–101

    Article  Google Scholar 

  • Korostelev F, Basuyau C, Leroy S, Tiberi C, Ahmed A, Stuart GW, Keir D, Rolandone F, Al Ganad F, Khanbari K, Boschi L (2014) Crustal and upper mantle structure beneath south-western margin of the Arabian Peninsula from teleseismic tomography. Geochem Geophys Geosyst 15:2850–2864

    Article  Google Scholar 

  • Krasheninnikov VA, Hall JKF, Hirsch F, Benjamini H, Flexer A (eds) (2005) Geological framework of the Levant, volume 1: Cyprus and Syria. Jerusalem

  • Lenoir J-L, Küster D, Liegeois J-R, Utke A, Haider A, Matheis G (1994) Origin and regional significance of late Precambrian and early Palaeozoic granitoids in the Pan-African belt of Somalia. Geol Rundsch 83:624–641

    Article  Google Scholar 

  • Li Y, Braitenberg C, Yang Y (2013) Interpretation of gravity data by the continuous wavelet transform: the case of the Chad lineament (North-Central Africa). J Appl Geophys 90:62–70

    Article  Google Scholar 

  • McLusky S et al (2000) Global Position System constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • Milesi JP, Frizon de Lamotte D, de Kock G, Toteu F (2010) Tectonic map of Africa, 1:10 000 000 scale. Paris, CCGM-CGMW

  • Moghadam HS, Corfu F, Stern RJ (2013) U–Pb zircon ages of late Cretaceous Nain–Dehshir ophiolites, central Iran. J Geol Soc 170:175–184

    Article  Google Scholar 

  • Morgan P (1995) Diamond exploration from the bottom up: regional geophysical signatures of lithosphere conditions favorable for diamond exploration. J Geochem Explor 53:145–165

    Article  Google Scholar 

  • Morner N-A (ed) (1980) Earth rheology, isostasy and eustasy. Wiley, Chichester

    Google Scholar 

  • Motavalli-Anbaran SH, Zeyen H, Brunet M-F, Anderstani VE (2011) Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling. Tectonics 30(TC5012):1–16

    Google Scholar 

  • Mulugeta G, Ghebreab W (2001) Modeling heterogeneous stretching during episodic or steady rifting of the continental lithosphere. Geology 29(10):895–898

    Article  Google Scholar 

  • Muluneh AA, Cuffaro M, Dogloni C (2014) Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions. Tectonophysics 632:21–31

    Article  Google Scholar 

  • Nikitin AA (1993) Statistical processing of geophysical data. Series of advanced geophysics. Russian experience, no. 22, Electromagnetic Research Centre, Moscow (in Russian)

  • Nyblade AA (2011) The upper-mantle low-velocity anomaly beneath Ethiopia, Kenya, and Tanzania: constraints on the origin of the African superswell in Eastern Africa and plate versus plume models of mantle dynamics. In: Beccaluva L, Bianchini G, Wilson M, (eds) Volcanism and evolution of the African lithosphere, The Geological Society of America, Special Paper 478, 1–14

  • Park Y, Nyblade AA, Rodgers AJ, Al-Amri A (2008) S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochem Geophys Geosyst 9(7):1–15

    Article  Google Scholar 

  • Pasyanos ME, Nyblade AN (2007) A top to bottom lithospheric study of Africa and Arabia. Tectonophysics 444:27–44

    Article  Google Scholar 

  • Petrov AV, Ermolayeva GM, Solokha EV (2009) Recognition of multi-indicator geophysical anomalies by the use of multidimensional hypothesis testing. Seism Technol 6(2):24–28 (in Russian)

    Google Scholar 

  • Petrov AV, Zinovkin SV, Osipenkov DYu, Yudin DB (2011) Computer technology of statistical and spectrum-correlation data analysis KOSKAD 3D 2011. Geoinformatics 4:7–13 (in Russian)

    Google Scholar 

  • Pollastro RM (2003) Total petroleum systems of the Paleozoic and Jurassic, Greater Ghawar uplift and adjoining provinces of Central Saudi Arabia and Northern Arabian-Persian Gulf. US Geological Survey Bulletin, 2202-H, 1–75

  • Priezzhev II (2010) Information technologies of integrated interpretation of geophysical data for geological modeling. Doctor of Science Thesis, Moscow Geological Prospecting University (in Russian)

  • Reilinger RE, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Filikov DASV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res BO5411. doi:10.1029/2005JB004051

    Google Scholar 

  • Robertson A (2004) Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Tectonophysics 66:331–387

    Google Scholar 

  • Roy IG (2002) A robust descent type algorithm for geophysical inversion through adaptive regularization. Appl Math Model 26:619–634

    Article  Google Scholar 

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790

    Article  Google Scholar 

  • Said R (ed) (1990) The geology of Egypt. AA Balkema/Rotterdam/Brookfield

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114(B01411):1–18

    Google Scholar 

  • Sandwell DT, Garcia E, Soofi K, Wessel P, Smith WHF (2013) Toward 1 mGal global marine gravity from CryoSat-2, Envisat, and Jason-1. Leading Edge 32(8):892–899

    Article  Google Scholar 

  • Scotese CR (2009) Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geol Soc Lond Spec Publ 326:57–83

    Article  Google Scholar 

  • Sharkov EV, Khanna C (1987) Evolution of the upper mantle matter within the areas of interplate basaltic magmatism (on example of Western Syria). Dokl Russ Acad Sci 297(3):684–686

    Google Scholar 

  • Stacy JS, Doe BR, Roberts RJ, Delevaux MH, Gramlich JW (1980) A lead isotope study of mineralization in the Saudi Arabian shield. Contrib Mineral Petrol 74:175–188

    Article  Google Scholar 

  • Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19

    Article  Google Scholar 

  • Stamps DS, Iaffaldano G, Calais E (2014) Role of mantle flow in Nubia–Somalia plate divergence. Geophys Res Lett 42:290–296. doi:10.1002/2014GL062515

    Article  Google Scholar 

  • Stern RJ, Johnson PR (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67

    Article  Google Scholar 

  • Stern RJ, Johnson PR, Kroner A, Yibas B (2004) Neoproterozoic ophiolites of the Arabian–Nubian Shield. Dev Precambrian Geol 13:95–128

    Article  Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9):2193. doi:10.1029/2001JB000576

    Google Scholar 

  • Tainton KM, Seggie AM, Bayly BA, Tomlinson I, Quadling KE (1999) Garnet thermobarometry: implication for mantle heat flow within the Tanzanian craton. In: Proceeding of the VII international Kimberlite conference. Red Roof Publishing CC, Cape Town, South Africa 852–860

  • Tunini L, Jimenez-Munt I, Fernandes M, Verges J, Villasenor A (2015) Lithospheric mantle heterogeneities beneath the Zagros mountains and the Iranian Plateau: a petrological–geophysical study. Geophys J Int 200:596–614

    Article  Google Scholar 

  • Verges J, Saura E, Casciello E, Fernandez M, Villasenor A, Jimenez-Munt I, Garsia-Castellanos D (2011) Crustal-scale cross-sections across the NW Zagros belt: implications for the Arabian margin reconstruction. Geol Mag. doi:10.1017/S0016756811000331,1-23

    Google Scholar 

  • Wdowinski S, Bock Y, Baer G, Prawirodirdjo L, Bechor L, Naaman S, Knafo R, Forrai Y, Melzer Y (2004) GPS measurements of current crustal movements along the Dead Sea Fault. J Geophys Res 109(B05403):1–16. doi:10.1029/2003JB002640

    Google Scholar 

  • Wishart J (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A:32–52

    Article  Google Scholar 

  • Yakobson AN (1997) Velocity of shear seismic waves in the Southern Caspian lithosphere. Dokl Russ Acad Sci 353(2):258–260

    Google Scholar 

  • Yanshin AL (1965) Tectonic structure of Eurasia. Geotectonics (Geotektonika) 5:7–34 (in Russian)

    Google Scholar 

  • Yirgu G, Ebinger CJ, Maguire PKH (2006) The Afar volcanic province within the East African Rift System: Introduction In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The Afar volcanic province within the East African Rift System. Geological Society, Special Publications, London, pp 1–6

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank four anonymous reviewers, who thoroughly reviewed the manuscript, and their critical comments and valuable suggestions were very helpful in preparing this paper. The authors express an acknowledgement to scientists created very useful satellite DB at the University of California, San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Eppelbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eppelbaum, L., Katz, Y. A new regard on the tectonic map of the Arabian–African region inferred from the satellite gravity analysis. Acta Geophys. 65, 607–626 (2017). https://doi.org/10.1007/s11600-017-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0057-2

Keywords

Navigation