Skip to main content
Log in

Structure and Anti-HIV Activity of Betulinic Acid Analogues

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Firstly discovered in 1980s, human immunodeficiency virus (HIV) continues to affect more and more people. However, there is no effective drug available for the therapy of HIV infection. Betulinic acid existing in various medicinal herbs and fruits exhibits multiple biological effects, especially its outstanding anti-HIV activity, which has drawn the attentions of many pharmacists. Among the derivatives of betulinic acid, some compounds exhibited inhibitory activities at the nanomolar concentration, and have entered phase II clinical trials. This paper summarizes the current investigations on the anti-HIV activity of betulinic acid analogues, and provides valuable data for subsequent researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med, 2012,2:a007161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tang MW, Shafer RW. HIV-1 antiretroviral resistance: scientific principles and clinical applications. Drugs, 2012,72(9):el–25

    Article  Google Scholar 

  3. Zhan P, Pannecouque C, De Clercq E, et al. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem, 2016, 59(7):2849–2878

    Article  PubMed  CAS  Google Scholar 

  4. Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses, 2014,6(10):4095–4139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev, 2009,109(7):3012–3043

    Article  PubMed  CAS  Google Scholar 

  6. Kuttan G, Pratheeshkumar P, Manu KA, et al. Inhibition of tumor progression by naturally occurring terpenoids. Pharm Biol, 2011,49(10):995–1007

    Article  PubMed  CAS  Google Scholar 

  7. Fulda S. Betulinic Acid for cancer treatment and prevention. Int J Mol Sci, 2008, 9(6): 1096–1107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Alakurtti S, Makela T, Koskimies S, et al. Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci, 2006,29(1): 1–13

    Article  PubMed  CAS  Google Scholar 

  9. Gupta N, Rath SK, Singh J, et al. Synthesis of novel benzylidene analogues of betulinic acid as potent cytotoxic agents. Eur J Med Chem, 2017,135:517–530

    Article  PubMed  CAS  Google Scholar 

  10. Dangroo NA, Singh J, Rath SK, et al. A convergent synthesis of novel alkyne-azide cycloaddition congeners of betulinic acid as potent cytotoxic agent. Steroids, 2017,123:1–12

    Article  PubMed  CAS  Google Scholar 

  11. Martin DE, Blum R, Wilton J, et al. Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob Agents Chemother, 2007,51(9):3063–3066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Altmann KH. Semisynthetic derivatives of epothilones. Fortschr Chem Org Naturst, 2009,90:135–156

    PubMed  Google Scholar 

  13. Li F, Goila-Gaur R, Salzwedel K, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA. 2003,100(23): 13555–13560

    Article  PubMed  CAS  Google Scholar 

  14. Li F, R Goila-Gaur K, Salzwedel NR, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci, 2003,100:13555–13560.

    Article  PubMed  CAS  Google Scholar 

  15. Smith PF, Ogundele A, Forrest A, et al. Phase I and II study of the safety, virologie effect, and pharmacokinetics/pharmacodynamics of singledose 3-o-(3',3'-dimethylsuccinyl) betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob Agents Chemother, 2007, 51(10):3574–3581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Martin DE, Blum R Doto J, et al. Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin Pharmacokinet, 2007,46(7):589–598

    Article  PubMed  CAS  Google Scholar 

  17. Lai W, Huang L, Ho P, et al. Betulinic acid derivatives that target gpl20 and inhibit multiple genetic subtypes of human immunodeficiency virus type 1. Antimicrob Agents Chemother, 2008,52(1): 128–136

    Article  PubMed  CAS  Google Scholar 

  18. Mayaux JF, Bousseau A, Pauwels R, et al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc Natl Acad Sci USA, 1994,91(9):3564–3568

    Article  PubMed  CAS  Google Scholar 

  19. Yuan X, Huang L, Ho P, et al. Conformation of gpl20 determines the sensitivity of HIV-1 DH012 to the entry inhibitor IC9564. Virology, 2004,324(2):525–530

    Article  PubMed  CAS  Google Scholar 

  20. Dang Z, Ho P, Zhu L, et al. New betulinic acid derivatives for bevirimat-resistant human immunodeficiency virus type-1. J Med Chem, 2013,56(5):2029–2037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dang Z, Qian K, Ho P, et al. Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants. Bioorg Med Chem Lett, 2012,22(16):5190–5194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Qian K, Bori ID, Chen CH, et al. Anti-AIDS agents 90. Novel C-28 modified bevirimat analogues as potent HIV maturation inhibitors. J Med Chem, 2012, 55(18):8128–8136

    PubMed  CAS  Google Scholar 

  23. Urano E, Ablan SD, Mandt R, et al. Alkyl amine bevirimat derivatives are potent and broadly active HIV-1 maturation inhibitors. Antimicrob Agents Chemother, 2015,60(1):190–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Timilsina U, Ghimire D, Timalsina B, et al. Identification of potent maturation inhibitors against HIV-1 clade C. Sci Rep, 2016,6:27403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Huang L, Ho P, Lee KH, et al. Synthesis and anti-HIV activity of bi-functional betulinic acid derivatives. Bioorg Med Chem, 2006,14(7):2279–2289

    Article  PubMed  CAS  Google Scholar 

  26. Huang L, Yuan X, Aiken C, et al. Bifimctional antihuman immunodeficiency virus type 1 small molecules with two novel mechanisms of action. Antimicrob Agents Chemother, 2004,48(2):66366–66275

    Article  CAS  Google Scholar 

  27. Zimmermann GR, Lehár J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today, 2007,12:34–42.

    Article  PubMed  CAS  Google Scholar 

  28. Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today, 2004,9:641–651

    Article  PubMed  CAS  Google Scholar 

  29. Xiong J, Kashiwada Y, Chen CH, et al. Conjugates of betulin derivatives with AZT as potent anti-HIV agents. Bioorg Med Chem, 2010,18(17):6451–6469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bori ID, Hung HY, Qian K, et al. Anti-AIDS agents 88. Anti-HIV conjugates of betulin and betulinic acid with AZT prepared via click chemistry. Tetrahedron Lett, 2012,53(15): 1987–1989

    PubMed  CAS  Google Scholar 

  31. Wang P, Liu C, Sanches T, et al. Design and synthesis of novel nitrogen-containing polyhydroxylated aromatics as HIV-l integrase inhibitors from caffeic acid phenethyl ester. Bioorg Med Chem Lett, 2009, 19(16):4574–4578

    Article  PubMed  CAS  Google Scholar 

  32. Zhao Y, Gu Q, Morris-Natschke SL, et al. Incorporation of Privileged Structures into Bevirimat Can Improve Activity against Wild-Type and Bevirimat-Resistant HIV-l. J Med Chem, 2016,59(19):9262–9268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Coric P, Turcaud S, Souquet F, et al. Synthesis and biological evaluation of a new derivative of bevirimat that targets the Gag CA-SP1 cleavage site. Eur J Med Chem, 2013,62:453–465

    Article  PubMed  CAS  Google Scholar 

  34. Gonzalez G, DaFonseca S, Errazuriz E, et al. Characterization of a novel type of HIV-l particle assembly inhibitor using a quantitative luciferase-Vpr packaging-based assay. PLoS One, 2011,6(11):e27234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhao H, Holmes SS, Baker GA, et al. Ionic derivatives of betulinic acid as novel HIV-l protease inhibitors. J Enzyme Inhib Med Chem, 2012,27(5):715–721

    Article  PubMed  CAS  Google Scholar 

  36. Swidorski JJ, Liu Z, Sit SY, et al. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids. Bioorg Med Chem Lett, 2016,26(8): 1925–1930

    Article  PubMed  CAS  Google Scholar 

  37. Nowicka-Sans B, Protack T, Lin Z, etal. Identification and characterization of BMS-955176, a secondgeneration HIV-l maturation inhibitor with improved potency, antiviral spectrum, and gag polymorphic coverage. Antimicrob Agents Chemother, 2016, 60(7):3956–3969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Qian K, Nakagawa-Goto K, Yu D, et al. Anti-AIDS agents 73: structure-activity relationship study and asymmetric synthesis of 3-O-monomethylsuccinylbetulinic acid derivatives. Bioorg Med Chem Lett, 2007,17(23):6553–6557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Qian K, Kuo RY, Chen CH, et al. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. J Med Chem, 2010,53(8):3133–3141

    PubMed  CAS  Google Scholar 

  40. Liu Z, Swidorski JJ, Nowicka-Sans B, et al. C-3 benzoic acid derivatives of C-3 deoxybetulinic acid and deoxybetulin as HIV-l maturation inhibitors. Bioorg Med Chem, 2016,24(8):1757–1770

    Article  PubMed  CAS  Google Scholar 

  41. Tang J, Jones SA, Jeffery JL, et al. Synthesis and biological evaluation of macrocyclized betulin derivatives as a novel class of anti-HIV-1 maturation inhibitors. Open Med Chem J, 2014,8:23–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li J, Goto M, Yang X, et al. Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity. Bioorg Med Chem Lett, 2016,26(1):68–71

    Article  PubMed  CAS  Google Scholar 

  43. Tang J, Jones SA, Jeffrey JL, et al. Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms. Bioorg Med Chem Lett, 2017,27(12):2689–2694

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Yao or Xing Zheng.

Additional information

This research was supported by the National Natural Science Foundation of China (No. 81273537), Scientific Research Fund of Education Department of Hunan Province (No. 17Al90), the Key Project of Science and Technology Department of Hunan Province (No. 2016DK2001), and the Key Disciplines of Hunan Province and the Zhengxing Scholar Program of the University of South China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Qx., Chen, Hf., Luo, Xr. et al. Structure and Anti-HIV Activity of Betulinic Acid Analogues. CURR MED SCI 38, 387–397 (2018). https://doi.org/10.1007/s11596-018-1891-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1891-4

Key words

Navigation