Skip to main content
Log in

Long non-coding RNA ANRIL in gene regulation and its duality in atherosclerosis

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

The antisense transcript long non-coding RNA (lncRNA) (antisense non-coding RNA in the INK4 locus, ANRIL) is an antisense of the cyclin-dependent kinase inhibitor 2B (CDKN2B) gene on chromosome 9p21 that contains an overlapping 299-bp region and shares a bidirectional promoter with alternate open reading frame (ARF). In the context of gene regulation, ANRIL is responsible for directly recruiting polycomb group (PcG) proteins, including polycomb repressive complex-1 (PRC-1) and polycomb repressive complex-2 (PRC-2), to modify the epigenetic chromatin state and subsequently inhibit gene expression in cis-regulation. On the other hand, previous reports have indicated that ANRIL is capable of binding to a specific site or sequence, including the Alu element, E2F transcription factor 1 (E2F1), and CCCTC-binding factor (CTCF), to achieve trans-regulation functions. In addition to its function in cell proliferation, adhesion and apoptosis, ANRIL is very closely associated with atherosclerosis- related diseases. The different transcripts and the SNPs that are related to atherosclerotic vascular diseases (ASVD-SNPs) are inextricably linked to the development and progression of atherosclerosis. Linear transcripts have been shown to be a risk factor for atherosclerosis, whereas circular transcripts are protective against atherosclerosis. Furthermore, ANRIL also acts as a component of the inflammatory pathway involved in the regulation of inflammation, which is considered to be one of the causes of atherosclerosis. Collectively, ANRIL plays an important role in the formation of atherosclerosis, and the artificial modification of ANRIL transcripts should be considered following the development of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pasmant E, Laurendeau I, Heron D, et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res, 2007,67(8):3963–3969

    Article  PubMed  CAS  Google Scholar 

  2. Aguilo F, Zhou MM, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res, 2011,71(16):5365–5369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dixon RJ, Eperon IC, Hall L, et al. A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species. Nucleic Acids Res, 2005,33(18):5904–5913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schunkert H, Gotz A, Braund P, et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008,117(13):1675–1684

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009,458(7235):223–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Holdt LM, Teupser D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arteriosclerosis, thrombosis, and vascular biology. 2012,32(2):196–206

    Article  PubMed  CAS  Google Scholar 

  7. Biros E, Cooper M, Palmer LJ, et al. Association of an allele on chromosome 9 and abdominal aortic aneurysm. Atherosclerosis. 2010,212(2):539–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bown MJ, Braund PS, Thompson J, et al. Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm. Circ Cardiovasc Genet, 2008,1(1):39–42

    Article  PubMed  Google Scholar 

  9. Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008,40(2):217–224

    Article  PubMed  CAS  Google Scholar 

  10. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007,316(5830):1491–1493

    Article  PubMed  CAS  Google Scholar 

  11. Ye S, Willeit J, Kronenberg F, et al. Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a population-based, prospective study. J Am Coll Cardiol, 2008,52(5):378–384

    Article  PubMed  CAS  Google Scholar 

  12. Cluett C, McDermott MM, Guralnik J, et al. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ Cardiovasc Genet, 2009,2(4):347–353

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gschwendtner A, Bevan S, Cole JW, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol, 2009,65(5):531–539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Matarin M, Brown WM, Singleton A, et al. Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke, 2008,39(5):1586–1589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vaccarino V, Bremner JD, Kelley ME. JUPITER: a few words of caution. Circ Cardiovasc Qual Outcomes. 2009;2(3):286–288.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene, 2011,30(16):1956–1962

    Article  PubMed  CAS  Google Scholar 

  17. Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet, 2012,3:219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Iacobucci I, Sazzini M, Garagnani P, et al. A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res, 2011,35(8):1052–1059

    Article  PubMed  CAS  Google Scholar 

  19. Chen C, Bartenhagen C, Gombert M, et al. Next-generation-sequencing-based risk stratification and identification of new genes involved in structural and sequence variations in near haploid lymphoblastic leukemia. Genes Chromosomes Cancer, 2013,52(6):564–579

    Article  PubMed  CAS  Google Scholar 

  20. Turnbull C, Ahmed S, Morrison J, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet, 2010,42(6):504–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bei JX, Li Y, Jia WH, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet, 2010,42(7):599–603

    Article  PubMed  CAS  Google Scholar 

  22. Zou ZW, Ma C, Medoro L, et al. LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells. Oncotarget, 2016,7(38):61741–61754

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cunnington MS, Santibanez Koref M, Mayosi BM, et al. Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. PLoS Genet, 2010,6(4):e1000899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bishop DT, Demenais F, Iles MM, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet, 2009,41(8):920–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Boon RA, Jae N, Holdt L, et al. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J Am Coll Cardiol, 2016,67(10):1214–1226

    Article  PubMed  CAS  Google Scholar 

  26. Chen H, Xin Y, Zhou L, et al. Cisplatin and paclitaxel target significant long noncoding RNAs in laryngeal squamous cell carcinoma. Med Oncol, 2014,31(11):246

    Article  PubMed  CAS  Google Scholar 

  27. Chidlow G, Wood JP, Sharma S, et al. Ocular expression and distribution of products of the POAG-associated chromosome 9p21 gene region. PLoS One, 2013,8(9):e75067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nie FQ, Sun M, Yang JS, et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther, 2015,14(1):268–277

    Article  PubMed  CAS  Google Scholar 

  29. Wibom C, Spath F, Dahlin AM, et al. Investigation of established genetic risk variants for glioma in prediagnostic samples from a population-based nested case-control study. Cancer Epidemiol Biomarkers Prev, 2015,24(5):810–816

    Article  PubMed  CAS  Google Scholar 

  30. Lu Y, Zhou X, Xu L, et al. Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. Onco Targets Ther, 2016,9:3077–3084

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Naemura M, Tsunoda T, Inoue Y, et al. ANRIL regulates the proliferation of human colorectal cancer cells in both two-and three-dimensional culture. Mol Cell Biochem, 2016,412(1-2):141–146

    Article  PubMed  CAS  Google Scholar 

  32. Peng L, Yuan X, Jiang B, et al. LncRNAs: key players and novel insights into cervical cancer. Tumour Biol, 2016,37(3):2779–2788

    Article  PubMed  CAS  Google Scholar 

  33. Pasmant E, Sabbagh A, Masliah-Planchon J, et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst, 2011,103(22):1713–1722

    Article  PubMed  CAS  Google Scholar 

  34. Zhu H, Li X, Song Y, et al. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway. Biochem Biophys Res Commun, 2015,467(2):223–228

    Article  PubMed  CAS  Google Scholar 

  35. Yuan W, Wu T, Fu H, et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science, 2012,337(6097):971–975

    Article  PubMed  CAS  Google Scholar 

  36. Bernard D, Martinez-Leal JF, Rizzo S, et al. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene, 2005,24(36):5543–5551

    Article  PubMed  CAS  Google Scholar 

  37. Yap KL, Li S, Munoz-Cabello AM, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010,38(5):662–674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schmid CW, Deininger PL. Sequence organization of the human genome. Cell, 1975,6(3):345–358

    Article  PubMed  CAS  Google Scholar 

  39. Kriegs JO, Churakov G, Jurka J, et al. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet, 2007,23(4):158–161

    Article  PubMed  CAS  Google Scholar 

  40. Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet, 2013,9(7):e1003588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jarinova O, Stewart AF, Roberts R, et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol, 2009,29(10):1671–1677

    Article  PubMed  CAS  Google Scholar 

  42. Yoshida. ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol Rep, 2010,24(3):701–707

    Article  PubMed  CAS  Google Scholar 

  43. Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol, 1998,18(11):6457–6473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Can Cell, 2002,2(2):103–112

    Article  CAS  Google Scholar 

  45. Wan G, Mathur R, Hu X, et al. Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal, 2013,25(5):1086–1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rodriguez C, Borgel J, Court F, et al. CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem Biophys Res Commun, 2010;392(2):129–134

    Article  PubMed  CAS  Google Scholar 

  47. Lagrue G, Niaudet P, Guillot F, et al. Pregnancy and glomerulonephritis. Lancet, 1989,2(8670):1037

    Article  PubMed  CAS  Google Scholar 

  48. Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J Hematol Oncol, 2015,8(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  49. Congrains A, Kamide K, Katsuya T, et al. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun, 2012,419(4):612–616

    Article  PubMed  CAS  Google Scholar 

  50. Schaefer AS, Bochenek G, Jochens A, et al. Genetic evidence for PLASMINOGEN as a shared genetic risk factor of coronary artery disease and periodontitis. Circ Cardiovasc Genet, 2015,8(1):159–167

    Article  PubMed  CAS  Google Scholar 

  51. Burdon KP, Macgregor S, Hewitt AW, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet, 2011,43(6):574–578

    Article  PubMed  CAS  Google Scholar 

  52. Burdon KP, Crawford A, Casson RJ, et al. Glaucoma risk alleles at CDKN2B-AS1 are associated with lower intraocular pressure, normal-tension glaucoma, and advanced glaucoma. Ophthalmology, 2012,119(8):1539–1545

    Article  PubMed  Google Scholar 

  53. Schaefer AS, Bochenek G, Manke T, et al. Validation of reported genetic risk factors for periodontitis in a large-scale replication study. J Clini Periodontol, 2013,40(6):563–572

    Article  CAS  Google Scholar 

  54. Masharawi YM, Kjaer P, Bendix T, et al. Lumbar facet and interfacet shape variation during growth in children from the general population: a three-year follow-up MRI study. Spine, 2009,34(4):408–412

    Article  PubMed  Google Scholar 

  55. Foroud T, Koller DL, Lai D, et al. Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke, 2012,43(11):2846–2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kremer PH, Koeleman BP, Pawlikowska L, et al. Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. J Neurol Neurosurg Psychiatry, 2015,86(5):524–529

    Article  PubMed  CAS  Google Scholar 

  57. Bai Y, Nie S, Jiang G, et al. Regulation of CARD8 Expression by ANRIL and Association of CARD8 Single Nucleotide Polymorphism rs2043211 (p.C10X) With Ischemic Stroke. Stroke, 2014,45(2):383–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Congrains A, Kamide K, Oguro R, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis, 2012,220(2):449–455

    Article  PubMed  CAS  Google Scholar 

  59. Lan WG, Xu DH, Xu C, et al. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep, 2016,36(1):263–270

    Article  PubMed  CAS  Google Scholar 

  60. Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet, 2010,6(12):e1001233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Liu Y, Sanoff HK, Cho H, et al. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One, 2009,4(4):e5027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol, 2010,30(3):620–627

    Article  PubMed  CAS  Google Scholar 

  63. Johnson AD, Hwang SJ, Voorman A, et al. Resequencing and clinical associations of the 9p21.3 region: a comprehensive investigation in the Framingham heart study. Circulation, 2013,127(7):799–810

    Article  PubMed  PubMed Central  Google Scholar 

  64. Motterle A, Pu X, Wood H, et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012,21(18):4021–4029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhao W, Smith JA, Mao G, et al. The cis and trans effects of the risk variants of coronary artery disease in the Chr9p21 region. BMC Med Genomics, 2015,8:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun, 2016,7:12429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhou X, Han X, Wittfeldt A, et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-kappaB pathway. RNA Biol, 2016,13(1):98–108

    Article  PubMed  Google Scholar 

  68. Joo M, Wright JG, Hu NN, et al. Yin Yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol, 2007,292(5):L1219–1226

    Article  PubMed  CAS  Google Scholar 

  69. Guo J, Casolaro V, Seto E, et al. Yin-Yang 1 activates interleukin-4 gene expression in T cells. J Biol Chem, 2001,276(52):48871–48878

    Article  PubMed  CAS  Google Scholar 

  70. Hasegawa A, Yasukawa M, Sakai I, et al. Transcriptional down-regulation of CXC chemokine receptor 4 induced by impaired association of transcription regulator YY1 with c-Myc in human herpesvirus 6-infected cells. J Immunol, 2001,166(2):1125–1131

    Article  PubMed  CAS  Google Scholar 

  71. Harismendy O, Notani D, Song X, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature, 2011,470(7333):264–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Battle TE, Lynch RA, Frank DA. Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis. Cancer Res, 2006,66(7):3649–3657

    Article  PubMed  CAS  Google Scholar 

  73. Katze MG, He Y, Gale M, Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol, 2002,2(9):675–687

    Article  PubMed  CAS  Google Scholar 

  74. Xu Z, Wei W, Gagneur J, et al. Antisense expression increases gene expression variability and locus interdependency. Mol Syst Biol, 2011,7:468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Camblong J, Beyrouthy N, Guffanti E, et al. Transacting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev, 2009,23(13):1534–1545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gagneur J, Sinha H, Perocchi F, et al. Genome-wide allele-and strand-specific expression profiling. Mol Syst Biol, 2009,5:274

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pelechano V, Steinmetz LM. Gene regulation by antisense transcription. Nat Rev Genet, 2013,14(12):880–893

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yi  (易 黎).

Additional information

This project was supported by grants from the Shenzhen Science and Technology Project (No. 201401027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Js., Li, Jz., Jia, Jj. et al. Long non-coding RNA ANRIL in gene regulation and its duality in atherosclerosis. CURR MED SCI 37, 816–822 (2017). https://doi.org/10.1007/s11596-017-1812-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1812-y

Key words

Navigation