Skip to main content
Log in

Synthesis and characterization of W-doped TiO2 supported by hybrid carbon nanomaterials of multi-walled carbon nanotubes and C60 fullerene by a hydrothermal method

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

W-doped TiO2 supported by hybrid carbon nanomaterials of multi-walled carbon nanotubes and C60 fullerene was synthesized by a simple hydrothermal method. The material displayed high visible light photocatalytic activity. X-ray diffraction, field emission transmission electron microscopy, ultra violet/visible light absorption and photoluminescence spectroscopy were used to characterize the material as photocatalyst. Photocatalytic activity on the degradation of Rhodamine B dye in an aqueous solution under ultraviolet light and visible light irradiation was also studied. The experimental results indicated that the photocatalytic activity of the material was much higher than that of pure TiO2 or Degussa P25 TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu JG, Xiong JF, Pei C. Low-temperature Hydrothermal Synthesis of TiO2 Photocatalyst with High Activity[J]. Chin. J. Catal., 2005, 26(9): 745–749

    CAS  Google Scholar 

  2. Zhang Q, Wang LY, Li XJ, et al. Preparation of TiO2 Film with Visiblelight Activity and Photocatalytic Properties[J]. J. Funct. Mater. Devices., 2002, 8(4): 397–401

    CAS  Google Scholar 

  3. Peng SQ, Jiang FY, Li YX. Preparation of N-doped TiO2 Photocatalyst and Degradation of Formaldehyhyde under Visible Light [J]. J. Funct. Mater., 2005, 36(8): 1 207–1 209

    CAS  Google Scholar 

  4. Claudio DD, Phani AR, Santuccia S. Enhanced Optical Properties of Sol-gel Derived TiO2 Films Uaing Microwave Irradiation[J]. Opt. Mater., 2007, 30(2): 279–284

    Article  Google Scholar 

  5. Datta A, Priyam A, Bhattacharyya SN, et al. Temperature Tunability of Size in CdS Nanoparticles and Size Dependent Photocatalytic Degradation of Nitroaromatics[J]. J. Colloid Interface Sci., 2008, 322(1): 128–135

    Article  CAS  Google Scholar 

  6. Cheng P, Deng CS, Gu MY, et al. Effect of Urea on the Photoactivity of Titania Powder Prepared by Sol-gel Method[J]. Mater. Chem. Phys., 2008, 107(1): 77–81

    Article  CAS  Google Scholar 

  7. Becker WG, Truong MM, Ai CC, et al. Interfacial Factors that Affect the Photoefficiency of Semiconductor-sensitized Oxidations in Nonaqueous media [J]. J. Phys. Chem., 1989, 93(12): 4 882–4 886

    Article  CAS  Google Scholar 

  8. Kutty TRN, Avudaithai M. Photocatalytic Activity of Tin-substituted TiO2 in Visible Light[J]. Chem. Phys. Lett., 1989, 163(1): 93–97

    Article  CAS  Google Scholar 

  9. Vaidyanathan S, Eduardo EW, Prashant VK. Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2-Au Composite Nanoparticles [J]. Langmuir, 2003, 19(2): 469–474

    Article  Google Scholar 

  10. Ryu JH, Park DS, Hahn BD, et al. Photocatalytic TiO2 Thin Films by Aerosol-deposition: From Micron-sized Particles to Nano-grained Thin Film at Room Temperature. Appl. Catal. B, 2008, 83(1–2): 1–7

    CAS  Google Scholar 

  11. Gopidas KR, Bohorquez M, Kamat PV. Photophysical and Photochemical Aspects of Coupled Semiconductors: Charge-transfer Processes in Colloidal Cadmium Sulfide-titania and Cadmium Sulfide-silver (I) Iodide Systems [J]. J. Phys. Chem., 1990, 94(16): 6 435–6 440

    Article  CAS  Google Scholar 

  12. Tian H, Ma JF, Li K, et al. Photocatalytic Degradation of Methyl Orange with W-doped TiO2 Synthesized by a Hydrothermal Method [J]. Mater. Chem. Phys., 2008, 112(1): 47–51

    Article  CAS  Google Scholar 

  13. Baskaran D, Mays JW, Bratcher MS. Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes [J]. Chem. Mater., 2005, 17(13): 3 389–3 397

    Article  CAS  Google Scholar 

  14. Ge JJ, Zhang D, Li Q, et al. Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides [J]. J. Am. Chem. Soc., 2005, 127(28): 9 984–9 985

    Article  CAS  Google Scholar 

  15. Fugetsu B, Satoh S, Shiba T, et al. Caged Multiwalled Carbon Nanotubes as the Adsorbents for Affinity-Based Elimination of Ionic Dyes [J]. Environ. Sci. Technol., 2004, 38(24): 6 890–6 896

    Article  CAS  Google Scholar 

  16. Chu DB, Zhang LY, Zhang JH, et al. Heterogeneous Electrocatalytic Reduction of Furfural on Nanocrystalline TiO2-CNT Complex Film Electrode in DMF Solution[J]. Acta Phys. Chim. Sin., 2006, 22(3): 373–377

    CAS  Google Scholar 

  17. Li WZ, Liang CH, Qiu JS, et al. Multi-walled Carbon Nanotubes Supported Pt-Fe Cathodic Catalyst for Direct Methanol Fuel Cell [J]. React. Kinet. Catal. Lett., 2004, 82(2): 235–240

    Article  CAS  Google Scholar 

  18. Salveat-Delmontte JP, Rubio A. Mechanical Properties of Carbon Nanotubes: A Fiber Digest for Beginners[J]. Carbon, 2000, 40(10):1 729–1 734

    Google Scholar 

  19. Saito T, Matsushige K, Tanaka K. Chemical Treatment and Modification of Multi-walled Carbon Nanotubes[J]. Physica B, 2002, 323(1–4): 280–283

    Article  CAS  Google Scholar 

  20. Wang F, Wang Q, Hu, YC et al. Study on Fabrication, Characterization and Photocatalytic Properties of Loaded Nanometer TiO2[J]. Rare Metal Mat. Eng., 2005, 34(3): 641–643

    Google Scholar 

  21. Wu YC, Song LY, Liu XL, et al. Preparation and Characterization of Carbon Nanotubes-TiO2 Nanocomposites [J]. J. Funct. Mater., 2008, 39(3): 497–498

    CAS  Google Scholar 

  22. Bie WW, Cong Y, Dong ZJ, et al. Synthesis and Characterization of TiO2-MWCNT Composites [J]. J. Wuhan. Univ. Sci. Technol. Mater. Sci. Ed., 2010, 33(4): 398–401

    Google Scholar 

  23. Schuster DI, MacMahon S, Guldi DM, et al. Synthesis and Photophysics of Porphyrin-fullerene Donor-acceptor Dyads with Conformationally Flexible Linkers[J]. Tetrahedron, 2006, 62(9): 1 928–1 936

    Article  CAS  Google Scholar 

  24. Guldi DM, Maggini M, Martin N, et al. Charge Separation in Fullerene Containing Donor-bridge-acceptor Molecules[J]. Carbon, 2000, 38(11–12): 1 615–1 623

    CAS  Google Scholar 

  25. Krishna V, Noguchi N, Koopman B, et al. Enhancement of Titanium Dioxide Photocatalysis by Water-soluble Fullerenes [J]. J. Colloid Interf. Sci., 2006, 304(1): 166–171

    Article  CAS  Google Scholar 

  26. Delgado JL, Cruz PDL, Urbina A, et al. The First Synthesis of A Conjugated Hybrid of C60-fullerene and a Single-wall Carbon Nanotube[J]. Carbon, 2007, 45(11): 2 250–2 252

    Article  CAS  Google Scholar 

  27. Wei W, Zhang C, Du ZJ, et al. Synthesis and Characterization of MWCNTs/fullerene Hybrid [J]. J. Mater. Sci. Engin., 2009, 27(2): 216–218

    CAS  Google Scholar 

  28. Lin J, Zong RL, Zhou M, et al. Photoelectric Catalytic Degradation of Methylene Blue by C60-modified TiO2 Nanotube Array[J]. Appl. Catal. B, 2009, 89(3–4): 425–431

    CAS  Google Scholar 

  29. Shi XL, Wang S, Dong XB, et al. Enhanced Photocatalytic Activity of Titanium Dioxide by Nut Shell Carbon[J]. J. Hazard. Mater., 2009, 167(1–3): 692–695

    Article  CAS  Google Scholar 

  30. Guan LH, Suenaga K, Okazaki T, et al. Coalescence of C60 Molecules Assisted by Doped Iodine Inside Carbon Nanotubes [J]. J. Am. Chem. Soc., 2007, 129(29): 8 954–8 955

    Article  CAS  Google Scholar 

  31. Yang Y, Wang HY, Li X, et al. Electrospun Mesoporous W6+-doped TiO2 Thin Films for Efficient Visible-light Photocatalysis[J]. Mater. Lett., 2009, 63(2): 331–333

    Article  CAS  Google Scholar 

  32. Luo YS, Liu JP, Xia XH, et al. Fabrication and Characterization of TiO2/Short MWCNTs with Enhanced Photocatalytic Activity [J]. Mater. Lett., 2007, 61(11–12): 2 467–2 472

    CAS  Google Scholar 

  33. Okada S, Saito S, Oshiyama A. Energetics and Electronic Structures of Encapsulated C60 in a Carbon Nanotube[J]. Phys. Rev. Lett., 2001, 86(17): 3 835–3 838

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Shi  (史晓亮).

Additional information

Funded by the Project for the Academic Leader Program of Wuhan City (No. 201150530146) and the Natural Science Foundation of Hubei Province (No. 20101j0018)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Zhu, Z. Synthesis and characterization of W-doped TiO2 supported by hybrid carbon nanomaterials of multi-walled carbon nanotubes and C60 fullerene by a hydrothermal method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 207–214 (2013). https://doi.org/10.1007/s11595-013-0666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0666-9

Key words

Navigation