Skip to main content
Log in

Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The purpose of this paper is to consider the set-valued optimization problem in Asplund spaces without convexity assumption. By a scalarization function introduced by Tammer and Weidner (J Optim Theory Appl 67:297–320, 1990), we obtain the Lagrangian condition for approximate solutions on set-valued optimization problems in terms of the Mordukhovich coderivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amahroq T., Taa A.: On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems. Optimization. 41, 159–172 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao T.Q., Mordukhovich B.S.: Necessary conditions for super minimizers in constrained multiobjective optimization. J. Global Optim. 43, 533–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao T.Q., Mordukhovich B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. 122, 301–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao T.Q., Tammer C.: Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications. Nonlinear Anal. 75, 1089–1103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen G.Y., Huang X.X., Yang X.Q.: Vector Optimization: Set-Valued and Variational Analysis. Springer, Berlin (2005)

    Google Scholar 

  6. Chinaie, M., Zafarani, J.: Image space analysis and scalarization for \({\varepsilon}\)-optimization of multifunctions. J. Optim. Theory Appl. (2011). doi:10.1007/s10957-010-9657-6

  7. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  8. Durea J., Dutta J., Tammer C.: Lagrange multipliers for \({\varepsilon}\)-pareto solutions in vector optimization with nonsolid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Durea J., Strugariu R.: On some Fermat rules for set-valued optimization problems. Optimization. 60, 575–591 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dutta J., Tammer C.: Lagrange conditions for vector optimization in Banach spaces. Math. Meth. Oper. Res. 64, 521–540 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao Y., Hou S.H., Yang X.M.: Existence and optimality conditions for approximate solutions to vector optimization problems. J. Optim. Theory Appl. 152, 97–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerth C., Weidner P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gong X.H., Dong H.B., Wang S.Y.: Optimality conditions for proper efficient solutions of vector set-valued optimization. J. Math. Anal. Appl. 284, 332–350 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Göpfert A., Riahi H., Tammer C., Zălinescu C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  15. Ha T.X.D.: Lagrange multipliers for set-valued optimization problems associated with coderivatives. J. Math. Anal. Appl. 311, 647–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ha, T.X.D., et al.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Pardalos, P.M. Nonlinear Analysis and Variational Problems, Springer Optimization and Its Applications 35, Springer Science Business Media, Berlin (2010)

  17. Ha T.X.D.: Optimality conditions for various efficient solutions involving codervatives: from set-valued optimization problems to set-valued equilibrium problems. Nonlinear Anal. 75, 1305–1323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiriart-Urruty J.B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jahn J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004)

    Book  Google Scholar 

  20. Kutateladze S.S.: Convex \({\varepsilon}\)-Programming. Soviet Math. Dokl. 20, 391–393 (1979)

    MATH  Google Scholar 

  21. : \({\varepsilon}\)-Solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luc D.T.: Theory of Vector Optimization, Lecture Notes in Economics and Mathematics Systems, vol. 319. Springer, New York (1989)

    Google Scholar 

  23. Mordukhovich B.S.: Variational Analysis and Generalizd Differentiation, Vol. I: Basic Theory, vol. 330. Springer, Berlin (2006)

    Google Scholar 

  24. Mordukhovich B.S.: Variational Analysis and Generalizd Differentiation, Vol. II: Applications, vol. 331. Springer, Berlin (2006)

    Google Scholar 

  25. Qiu Q.S., Yang X.M.: Some properties of approximate solutions for vector optimization problem with set-valued functions. J. Global Optim. 47, 1–12 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar R.T., Wets R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  27. Taa A.: \({\varepsilon}\)-Subdifferentials of set-valued maps and \({\varepsilon}\)-weak Pareto optimality for multiobjective optimization. Math. Meth. Oper. Res. 62, 187–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vályi I.: Approximate saddle-point theroems in vector optimization. J. Optim. Theory Appl. 55, 435–448 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. White D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49, 319–337 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng X.Y., Ng K.F.: Fermat rule for multifunctions in Banach spaces. Math. Program. 104, 69–909 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zheng X.Y., Ng K.F.: The Lagrange multiplier rule for multifunctions in Banach spaces. SIAM J. Optim. 17, 1154–1175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Long.

Additional information

This work was supported by the National Natural Science Foundation of China (11001287), the Natural Science Foundation Project of Chongqing (CSTC 2010BB9254) and the Education Committee Project Research Foundation of Chongqing (No. KJ100711).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, X.J., Li, X.B. & Zeng, J. Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems. Optim Lett 7, 1847–1856 (2013). https://doi.org/10.1007/s11590-012-0527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0527-z

Keywords

Navigation