Skip to main content
Log in

Nonlinear Programming via König’s Maximum Theorem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Starting from one extension of the Hahn–Banach theorem, the Mazur–Orlicz theorem, and a not very restrictive concept of convexity, that arises naturally in minimax theory, infsup-convexity, we derive an equivalent version of that fundamental result for finite dimensional spaces, which is a sharp generalization of König’s Maximum theorem. It implies several optimal statements of the Lagrange multipliers, Karush/Kuhn–Tucker, and Fritz John type for nonlinear programs with an objective function subject to both equality and inequality constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordan, P.: Uber die Auflösung Linearer Gleichungen mit Reelen Coefficienten. Math. Ann. 6, 23–28 (1873)

    Article  MathSciNet  Google Scholar 

  2. Farkas, J.: Theorie der Einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)

    MathSciNet  MATH  Google Scholar 

  3. Giorgi, G., Guerraggio, A., Thierfelder, J.: Mathematics of Optimization: Smooth and Nonsmooth Case. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  4. Giorgi, G., Kjeldsen, T.H. (eds.): Traces and Emergence of Nonlinear Programming. Birkhäuser/Springer Basel AG, Basel (2014)

    MATH  Google Scholar 

  5. Dax, A., Sreedharan, V.P.: Theorems of the alternative and duality. J. Optim. Theory Appl. 94, 561–590 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, Y., Kalantari, B.: A procedure of Chvátal for testing feasibility in linear programming and matrix scaling. Linear Algebra Appl. 416, 795–798 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lasserre, J.B.: Duality and a Farkas lemma for integer programs. In: Pearce, C., Hunt, E. (eds.) Structure and Applications. Springer Optimization and Its Applications, vol. 32, pp. 15–39. Springer, New York (2009)

    Google Scholar 

  8. Jeyakumar, V., Lee, G.M., Li, G.: Global optimality conditions for classes of non-convex multi-objective quadratic optimization problems. In: Burachik, R.S., Yao, J.-C. (eds.) Variational Analysis and Generalized Differentiation in Optimization and Control. Springer Optimization and its Applications, vol. 47, pp. 177–186. Springer, New York (2010)

    Chapter  Google Scholar 

  9. Chuong, T.D.: L-invex-infine functions and applications. Nonlinear Anal. 75, 5044–5052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Gordan-type alternative theorems and vector optimization revisited. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization. Vector Optimization, vol. 1, pp. 29–59. Springer, Berlin (2012)

    Chapter  Google Scholar 

  11. Doagooei, A.R.: Farkas-type theorems for positively homogeneous systems in ordered topological vector spaces. Nonlinear Anal. 75, 5541–5548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinh, N., Jeyakumar, V.: Farkas’ lemma: three decades of generalizations for mathematical optimization. Top 22, 1–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinh, N., Mo, T.H.: Farkas lemma for convex systems revisited and applications to sublinear-convex optimization problems. Vietnam J. Math. 43, 297–321 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. König, H.: Sublineare Funktionale. Arch. Math. 23, 500–508 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. König, H.: Sublinear functionals and conical measures. Arch. Math. 77, 56–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stefanescu, A.: A theorem of the alternative and a two-function minimax theorem. J. Appl. Math. 2004(2), 167–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kassay, G., Kolumbán, J.: On a generalized sup-inf problem. J. Optim. Theory Appl. 91, 651–670 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruiz Galán, M.: An intrinsic notion of convexity for minimax. J. Convex Anal. 21, 1105–1139 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ruiz Galán, M.: A sharp Lagrange multiplier theorem for nonlinear programs. J. Glob. Optim. doi:10.1007/s10898-015-0379-z

  20. Ruiz Galán, M.: The Gordan theorem and its implications for minimax theory. J. Nonlinear Convex Anal. (to appear)

  21. Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. USA 39, 42–47 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazur, S., Orlicz, W.: Sur les Espaces Métriques Linéaires II. Stud. Math. 13, 137–179 (1953)

    MathSciNet  MATH  Google Scholar 

  23. Pták, V.: On a theorem of Mazur and Orlicz. Stud. Math. 15, 365–366 (1956)

    MathSciNet  MATH  Google Scholar 

  24. König, H.: Über das von Neumannsche minimax-theorem. Arch. Math. 19, 482–487 (1968)

    Article  MATH  Google Scholar 

  25. Simons, S.: Minimal sublinear functionals. Stud. Math. 37, 37–56 (1970)

    MathSciNet  MATH  Google Scholar 

  26. Simons, S.: The Hahn–Banach–Lagrange theorem. Optimization 56, 149–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grzybowski, J., Przybycień, H., Urbański, R.: On Simons’ Version of Hahn–Banach–Lagrange Theorem, vol. 102, pp. 99–104. Banach Center Publ., Warsaw (2014). (Polish Acad. Sci. Inst. Math.)

  28. Dinh, N., Mo, T.H.: Generalizations of the Hahn–Banach theorem revisited. Taiwan. J. Math. 19, 1285–1304 (2015)

    MathSciNet  Google Scholar 

  29. Uzawa, H.: The Kuhn–Tucker theorem in concave programming. In: Arrow, K.J., Hurwicz, L., Uzawa, H. (eds.) Studies in Linear and Nonlinear Programming, pp. 32–37. Stanford University Press, Stanford (1958)

    Google Scholar 

  30. Rockafellar, R.T.: Convex Analysis. Reprint of the 1970 original. Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ (1997)

  31. Arrow, K.J., Enthoven, A.C.: Quasi-concave programming. Econometrica 29, 779–800 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hayasi, M., Komiya, H.: Perfect duality for convexlike programs. J. Optim. Theory Appl. 38, 179–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Illés, T., Kassay, G.: Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. J. Optim. Theory Appl. 101, 243–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, R.: A general Gordan alternative theorem with weakened convexity and its application. Optimization 51, 709–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Suzuki, S., Kuroiwa, D.: Optimality conditions and the basic constraint qualification for quasiconvex programming. Nonlinear Anal. 74, 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fang, D., Luo, X., Wang, X.: Strong and total Lagrange dualities for quasiconvex programming. J. Appl. Math. 2014, 453912 (2014). doi:10.1155/2014/453912

  37. Ruiz Galán, M.: An concave-convex Ky Fan minimax inequality. Minimax Theory Appl. 1, 111–124 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Karush, W.: Minima of Functions of Several Variables with Inequalities as Side Conditions. MSc Thesis, Department of Mathematics, University of Chicago (1939)

  39. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950. University of California Press, Berkeley and Los Angeles (1951), pp. 481–492

  40. Brezhnevaa, O., Tret’yakov, A.A.: An elementary proof of the Karush–Kuhn–Tucker theorem in normed linear spaces for problems with a finite number of inequality constraints. Optimization 60, 613–618 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, 1948. Interscience Publishers, Inc., New York, pp. 187–204 (1948)

  42. Ito, K., Kunisch, K.: Karush–Kuhn–Tucker conditions for nonsmooth mathematical programming problems in function spaces. SIAM J. Control Optim. 49, 2133–2154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Flores-Bazán, F.: Fritz John necessary optimality conditions of the alternative-type. J. Optim. Theory Appl. 161, 807–818 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Giannessi, F., Mastroeni, G., Yao, J.C.: On maximum and variational principles via image space analysis. Positivity 16, 405–427 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their helpful suggestions. Research partially supported by Junta de Andalucía Grant FQM359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ruiz Galán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiel López, P., Ruiz Galán, M. Nonlinear Programming via König’s Maximum Theorem. J Optim Theory Appl 170, 838–852 (2016). https://doi.org/10.1007/s10957-016-0959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0959-1

Keywords

Mathematics Subject Classification

Navigation