Skip to main content
Log in

Discretization orders for distance geometry problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Given a weighted, undirected simple graph G = (V, E, d) (where \({d:E\to\mathbb{R}_+}\)), the distance geometry problem (DGP) is to determine an embedding \({x:V\to\mathbb{R}^K}\) such that \({\forall \{i,j\} \in E\;\|x_i-x_j\|=d_{ij}}\) . Although, in general, the DGP is solved using continuous methods, under certain conditions the search is reduced to a discrete set of points. We give one such condition as a particular order on V. We formalize the decision problem of determining whether such an order exists for a given graph and show that this problem is NP-complete in general and polynomial for fixed dimension K. We present results of computational experiments on a set of protein backbones whose natural atomic order does not satisfy the order requirements and compare our approach with some available continuous space searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman H., Westbrook J., Feng Z., Gilliland G., Bhat T., Weissig H., Shindyalov I., Bourne P.: The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)

    Article  Google Scholar 

  2. Blumenthal L.: Theory and applications of distance geometry. Oxford University Press, Oxford (1953)

    MATH  Google Scholar 

  3. Carvalho R., Lavor C., Protti F.: Extending the geometric build-up algorithm for the molecular distance geometry problem. Inf. Process. Lett. 108, 234–237 (2008)

    Article  Google Scholar 

  4. Cook C., Kim D.: Best sorting algorithm for nearly sorted lists. Commun. ACM 23(11), 620–624 (1980)

    Article  Google Scholar 

  5. Dong Q., Wu Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 26, 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. IEEE Infocom Proceedings pp. 2673–2684 (2004)

  7. Fourer R., Gay D.: The AMPL book. Duxbury Press, Pacific Grove (2002)

    Google Scholar 

  8. Gu J., Du B., Pardalos P.: Multispace search for protein folding. In: Biegler, L., Coleman, T., Conn, A., Santosa, F. (eds) Large-scale optimization with applications, Part III: molecular structure and optimization, pp. 47–68. Springer, Berlin (1997)

    Google Scholar 

  9. Henneberg L.: Die graphische Statik der starren Systeme. B.G. Teubner, Leipzig (1911)

    MATH  Google Scholar 

  10. Huang H., Pardalos P.: A multivariate partition approach to optimization problems. Cyber. Syst. Anal. 38, 265–275 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang H.X., Liang Z.A., Pardalos P.: Some properties for the Euclidean distance matrix and positive semidefinite matrix completion problems. J. Global Optim. 25, 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. ILOG: ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France (2008)

  13. Jiao, Y., Stillinger, F., Torquato, S.: Geometrical ambiguity of pair statistics I. point configurations. Tech. Rep. 0908.1366v1, arXiv (2009)

  14. Lavor C., Liberti L., Maculan N.: Computational experience with the molecular distance geometry problem. In: Pintér, J. (eds) Global optimization: scientific and engineering case studies., pp. 213–225. Springer, Berlin (2006)

    Google Scholar 

  15. Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry problem. Tech. Rep. q-bio/0608012, arXiv (2006)

  16. Lavor C., Liberti L., Maculan N.: Molecular distance geometry problem. In: Floudas, C., Pardalos, P. (eds) Encyclopedia of optimization, second edn., pp. 2305–2311. Springer, New York (2009)

    Google Scholar 

  17. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. (accepted)

  18. Lavor, C., Liberti, L., Mucherino, A., Maculan, N.: On a discretizable subclass of instances of the molecular distance geometry problem. In: Shin, D. (ed.) Proceedings of the 24th Annual ACM Symposium on Applied Computing, pp. 804–805. ACM (2009)

  19. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Computing artificial backbones of hydrogen atoms in order to discover protein backbones. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 751–756. IEEE, Mragowo, Poland (2009)

  20. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein backbones by using artificial backbones of hydrogens. J. Global Optim. (accepted). doi:10.1007/s10898-010-9584-y

  21. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the solution of molecular distance geometry problems with interval data. In: Proceedings of the International Workshop on Computational Proteomics. IEEE, Hong Kong (2010)

  22. Liberti L., Lavor C., Maculan N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liberti L., Lavor C., Mucherino A., Maculan N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

    Article  MathSciNet  Google Scholar 

  24. Liberti, L., Masson, B., Lavor, C., Lee, J., Mucherino, A.: On the number of solutions of the discretizable molecular distance geometry problem. Tech. Rep. 1010.1834v1[cs.DM], arXiv (2010)

  25. Moré J., Wu Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7(3), 814–846 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of the International Conference on Computational Biology, vol. 58, pp. 349–353. World Academy of Science, Engineering and Technology (2009)

  27. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. (in revision)

  28. Mucherino A., Lavor C., Liberti L., Maculan N.: On the definition of artificial backbones for the discretizable molecular distance geometry problem. Mathematica Balkanica 23, 289–302 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Mucherino, A., Lavor, C., Maculan, N.: The molecular distance geometry problem applied to protein conformations. In: Cafieri, S., Mucherino, A., Nannicini, G., Tarissan, F., Liberti, L. (eds.) Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, pp. 337–340. École Polytechnique, Paris (2009)

  30. Mucherino, A., Liberti, L., Lavor, C., Maculan, N.: Comparisons between an exact and a metaheuristic algorithm for the molecular distance geometry problem. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 333–340. ACM, Montreal (2009)

  31. Pardalos P., Liu X.: A tabu based pattern search method for the distance geometry problem. In: Giannessi, F., Rapcsák, T., Komlósi, S. (eds) (eds.) New trends in mathematical programming, Kluwer, Dordrecht (1998)

    Google Scholar 

  32. Pardalos, P., Shalloway, D., Xue, G. (eds.) (1996) Global minimization of nonconvex energy functions: molecular conformation and protein folding, vol. 23. Am. Math. Soc.

  33. Schank T., Wagner D.: Finding, counting and listing all triangles in large graphs, an experimental study. In: Nikoletseas, S. (eds) Workshop on Experimental Algorithms, LNCS, vol. 3503, pp. 606–609. Springer, Berlin (2005)

    Google Scholar 

  34. So M.C., Ye Y.: Theory of semidefinite programming for sensor network localization. Math. Program. 109, 367–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu D., Wu Z.: An updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 37, 661–673 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu D., Wu Z., Yuan Y.: Rigid versus unique determination of protein structures with geometric buildup. Optim. Lett. 2(3), 319–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Liberti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavor, C., Lee, J., Lee-St. John, A. et al. Discretization orders for distance geometry problems. Optim Lett 6, 783–796 (2012). https://doi.org/10.1007/s11590-011-0302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0302-6

Keywords

Navigation