Skip to main content
Log in

An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data

  • Original Article
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

An updated geometric build-up algorithm is developed for solving the molecular distance geometry problem with a sparse set of inter-atomic distances. Different from the general geometric build-up algorithm, the updated algorithm re-computes the coordinates of the base atoms whenever necessary and possible. In this way, the errors introduced in solving the algebraic equations for the determination of the coordinates of the atoms are controlled in the intermediate computational steps. The method for re-computing the coordinates of the base atoms based on the estimation on the root-mean-square deviation (RMSD) is described. The results of applying the updated algorithm to a set of protein structure problems are presented. In many cases, the updated algorithm solves the problems with high accuracy when the results of the general algorithm are inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov L.N., Bourne P.E. (2000) The protein data bank. Nuc. Acid. Res. 28, 235–242

    Article  Google Scholar 

  • Bolognesi M., Onesti S., Gatti G., Coda A., Ascenzi P., Brunori M. (1989) Aplysia limacina myoglobin: crystallographic analysis at 1.6 ÁA resolution. J. Mol. Biol. 205, 529–544

    Article  Google Scholar 

  • Brooks III C.L., Karplus M., Pettitt B.M. (1988) Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. Wiley, New York

    Google Scholar 

  • Brüger A.T., Niles M. (1993) Computational challenges for macromolecular modeling. In: Lipkowitz K.B., Boyd D.B. (eds.), Reviews in Computational Chemistry, vol 5. VCH Publishers, Wcinheim, pp. 299–335

    Google Scholar 

  • Creighton, T.E.: Proteins: Structures and Molecular Properties, 2nd edn. Freeman and Company, San Franscisco, CA, New York (1993)

  • Crippen G.M., Havel T.F. (1988). Distance Geometry and Molecular Conformation. Wiley, New York

    Google Scholar 

  • Dong Q., Wu Z. (2002) A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Optim. 22, 365–375

    Article  Google Scholar 

  • Dong Q., Wu Z. (2003) A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global. Optim. 26, 321–333

    Article  Google Scholar 

  • Glunt W., Hayden T.L., Hong S., Wells J. (1990) An alternating projection algorithm for computing the nearest euclidean distance matrix. SIAM J. Mat. Anal. Appl. 11(4): 589–600

    Article  Google Scholar 

  • Glunt W., Hayden T.L., Raydan M. (1993) Molecular conformations from distance matrices. J. Comput. Chem. 14(1): 114–120

    Article  Google Scholar 

  • Golub G.H., van Loan C.F. (1989) Matrix Computations. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Havel T.F. (1995) Distance geometry. In: Grant D.M., Harris R.K. (eds.), Encyclopedia of Nuclear Magnetic Resonance. Wiley, New York, pp. 1701–1710

    Google Scholar 

  • Havel T.F., Snow M.E. (1991) A new method for building protein conformations from sequence alignments with homologues of known structure. J. Mol. Biol. 217, 1–7

    Article  Google Scholar 

  • Hendrickson, B.A.: The molecular problem: determining conformation from pairwise distances. Ph.D. thesis, Cornell University, Ithaca, NY (1991)

  • Hendrickson B.A. (1995) The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5(4): 835–857

    Article  Google Scholar 

  • Huang H.X., Liang Z.A., Pardalos P. (2002) Some Properties for the Euclidean Distance Matrix and Positive Semi-Definite Matrix Completion Problems. Department of Industrial and Systems Engineering, University of Florida

    Google Scholar 

  • Kearsly A., Tapia R., Trosset M. (1998) Solution of the metric STRESS and SSTRESS problems in multidimensional scaling by Newton’s method. Comput. Stat. 13, 369–396

    Google Scholar 

  • Kuntz I.D., Thomason J.F., Oshiro C.M. (1993) Distance geometry. In: Oppenheimer N.J., James T.L. (eds) Methods in Enzymology, vol. 177. Academic Press, New York, pp. 159–204

    Google Scholar 

  • Moré J., Wu Z. (1996a) ε-Optimal solutions to distance geometry problems via global continuation. In: Pardalos P.M., Shalloway D., Xue G. (eds) Global Minimization of Non-Convex Energy Functions: Molecular Conformation and Protein Folding. American Mathematical Society, Providence, RI, pp. 151–168

    Google Scholar 

  • Moré J. Wu Z.(1996b) Smoothing techniques for macromolecular global optimization. In: Di Pillo G., Gianessi F. (eds) Nonlinear Optimization and Applications. Plenum Press, New York, pp. 297–312

    Google Scholar 

  • Moré J., Wu Z. (1997a) Global continuation for distance geometry problems. SIAM J. Optim. 7(3): 814–836

    Article  Google Scholar 

  • Moré J., Wu Z. (1997b) Issues in large scale global molecular optimization. In: Biegler L., Coleman T., Conn A., Santosa F. (eds) Large Scale Optimization with Applications. Springer-Verlag, Berlin, pp. 99–122

    Google Scholar 

  • Moré J., Wu Z. (1999) Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234

    Article  Google Scholar 

  • Saxe, J. B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In Proc. 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

  • Trosset M. (1998) Applications of multidimensional scaling to molecular conformation. Comput. Sci. Stat. 29, 148–152

    Google Scholar 

  • Yoon, J., Gad, Y., Wu, Z., Mathematical modeling of protein structure with distance geometry, to appear. In: Yuan, Y., et al. (eds), Numerical Linear Algebra and Optimization, Scientific Press, (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Wu, Z. An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data. J Glob Optim 37, 661–673 (2007). https://doi.org/10.1007/s10898-006-9080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9080-6

Keywords

Navigation