Skip to main content
Log in

Ground state solutions for a class of fractional Hamiltonian systems

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper we study the following fractional Hamiltonian systems

$$\begin{aligned} \left\{ \begin{array}{lllll} -_{t}D^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}x(t))- L(t).x(t)+\nabla W(t,x(t))=0, \\ x\in H^{\alpha }(\mathbb {R}, \mathbb {R}^{N}), \end{array} \right. \end{aligned}$$

where \(\alpha \in \left( {1\over {2}}, 1\right] ,\ t\in \mathbb {R}, x\in \mathbb {R}^N,\ _{-\infty }D^{\alpha }_{t}\) and \(_{t}D^{\alpha }_{\infty }\) are the left and right Liouville–Weyl fractional derivatives of order \(\alpha \) on the whole axis \(\mathbb {R}\) respectively, \(L:\mathbb {R}\longrightarrow \mathbb {R}^{2N}\) and \(W: \mathbb {R}\times \mathbb {R}^{N}\longrightarrow \mathbb {R}\) are suitable functions. One ground state solution is obtained by applying the monotonicity trick of Jeanjean and the concentration-compactness principle in the case where the matrix L(t) is positive definite and \(W \in C^{1}(\mathbb {R}\times \mathbb {R}^{N},\mathbb {R})\) is superquadratic but does not satisfy the usual Ambrosetti–Rabinowitz condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz, G.A.M., Ledesma, C.E.T.: Multiplicity of solutions for fractional Hamiltonian systems with Liouville–Weyl fractional derivatives. Fract. Calc. Appl. Anal. 18, 875–890 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Coti Zelati, V.: Multiple homoclinic orbits for a class of conservative systems. Rend. Semin. Mat. Univ. Padova 89, 177–194 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Bahri, A.: Critical Points at Infinity in Some Variational Problems. Pitman Research Notes in Mathematics Series, vol. 182. Longman House, Harlow (1989)

    MATH  Google Scholar 

  5. Bai, Z.B., Lu, H.S.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  Google Scholar 

  6. Benhassine, A.: Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems. Elect. J. of Diff. Eq., 93, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Benhassine, A.: Multiple of homoclinic solutions for a perturbed dynamical systems with combined nonlinearities. Medit. J. Math. 14:132 (2017). https://doi.org/10.1007/s00009-017-0930-x

  8. Benhassine, A.: Existence and multiplicity of periodic solutions for a class of the second order Hamiltonian systems. Nonlinear Dyn. Syst. Theory 14(3), 257–264 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Benhassine, A: Existence and infinitely of many solutions for a nonperiodic fractional Hamiltonian systems Diff. Int. Eq. 33(9/10) (Forthcoming)

  10. Benhassine, A.: Fractional Hamiltonian systems with locally defined potentials. Theor. Math. Phys. 195(1), 563–571 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20, p. xii+155. Springer, Cham (2016)

    Book  Google Scholar 

  12. Carriao, P.C., Miyagaki, O.H.: Existence of homoclinic solutions for a class of time dependent Hamiltonian systems. J. Math. Anal. Appl. 230, 157–172 (1999)

    Article  MathSciNet  Google Scholar 

  13. Ding, Y.H.: Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 25, 1095–1113 (1995)

    Article  MathSciNet  Google Scholar 

  14. Dipierro, S., Patrizi, S., Valdinoci, E.: Chaotic orbits for systems of nonlocal equations. Commun. Math. Phys. 2, 583–626 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fall, M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity 28, 1937–1961 (2015)

    Article  MathSciNet  Google Scholar 

  16. Jiang, W., Zhang, Q.: Multiple homoclinic soluions for superquadratic Hamiltonian systems. Elect. J. of Differ. Equ. 2016, 1–12 (2016)

    Article  Google Scholar 

  17. Hilfer, R.: Applications of Fractional Calculus in Physics. World Science, Singapore (2000)

    Book  Google Scholar 

  18. Izydorek, M., Janczewska, J.: Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differ. Equ. 219, 375–389 (2005)

    Article  MathSciNet  Google Scholar 

  19. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on \(\mathbb{R}^{N}\). Proc. R. Soc. Edinb. A 129, 787–809 (1999)

    Article  Google Scholar 

  20. Jiang, W.H.: The existence of solutions for boundary value problems of fractional differential equatios at resonance. Nonlinear Anal. 74, 1987–1994 (2011)

    Article  MathSciNet  Google Scholar 

  21. Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bif. Chaos 22, 1–17 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kilbas, A., Bonilla, B., Trujillo, J.J.: Existence and uniqueness theorems for nonlinear fractional differential equations. Demonst. Math. 33, 583–602 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Singapore (2006)

    Book  Google Scholar 

  24. LI, G., YE, H.: Existence of positive solutions to semilinear elliptic systems in \({\mathbb{R}}^{N}\) with zero mass. Act. Math. Sci. 33, 913–928 (2013)

    Article  Google Scholar 

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact cases, part II. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  26. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

    Book  Google Scholar 

  27. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  28. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1897–1899)

  29. Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Provodence (1986)

  30. Rabinowitz, P.H., Tanaka, K.: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206, 473–499 (1991)

    Article  MathSciNet  Google Scholar 

  31. Schechter, M.: Linking Methods in Critical Point Theory. Birkhauser, Boston (1999)

    Book  Google Scholar 

  32. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  33. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Disc. Cont. Dyn. Syst. 33, 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Torres, C.: Existence of solution for a class of fractional Hamiltonian systems. Electron. J. Differ. Equ. 2013, 1–12 (2013)

    Article  Google Scholar 

  35. Willem, M.: Minimax Thorems. Birkhauser, Boston (1996)

    Book  Google Scholar 

  36. Wu, X., Zhang, Z.: Solutions for perturbed fractional Hamiltonian systems without coercive conditions. Bound. Value Probl. 2015, 149 (2015)

    Article  MathSciNet  Google Scholar 

  37. Xu, J., O’Regan, D., Zhang, K.: Multiple solutions for a calss of fractional Hamiltonian systems. Fract. Calc. Appl. Anal. 18, 48–63 (2015)

    Article  MathSciNet  Google Scholar 

  38. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  39. Zhang, S.Q.: Existence of a solution for the fractional differential equation with nonlinear boundary conditions. Comput. Math. Appl. 61, 1202–1208 (2011)

    Article  MathSciNet  Google Scholar 

  40. Zou, W.: Variant fountain theorems and their applications. Manuscr. Math. 104, 343–358 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the handling editors and the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazek Benhassine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhassine, A. Ground state solutions for a class of fractional Hamiltonian systems. Ricerche mat 68, 727–743 (2019). https://doi.org/10.1007/s11587-019-00437-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-019-00437-z

Keywords

Mathematics Subject Classification

Navigation