Skip to main content
Log in

Elliptical flows perturbed by shear waves

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We consider the superimposition of two shear waves on a pseudo-plane motion of the first kind with elliptical streamlines. If the shear waves satisfy some special assumptions it is possible to establish a recurrence relation among the Rivlin–Ericksen tensors associated with the flow at hand. This remarkable kinematical result allows to determine new exact solutions for a large class of materials and to generalize some well known solutions modelling special flows (such as the celebrated Berker’s solution for a Navier–Stokes fluid in an orthogonal rheometer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This time-dependent generalization of the motion in (1.2) is not a dynamically possible solution for simple fluids but it is an interesting class of possible flows when inertia terms are ignored.

  2. If in (1.9) we change the trigonometric functions \(\cos \) and \(\sin \) with the hyperbolic functions \(\cosh \) and \(\sinh \) respectively, we obtain a motion with hyperbolic streamlines [25].

References

  1. Abbott, T.N.G., Walters, K.: Rheometrical flow systems part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier–Stokes equations. J. Fluid Mech. 40, 205–213 (1970)

    Article  Google Scholar 

  2. Andreadou, A., Parker, D.F., Spencer, A.J.M.: Some exact dynamic solutions in nonlinear elasticity. Int. J. Eng. Sci. 31, 695–718 (1993)

    Article  MathSciNet  Google Scholar 

  3. Astarita, G., Marucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, New York (1974)

    Google Scholar 

  4. Bayly, B.J.: Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 2160 (1986)

    Article  MathSciNet  Google Scholar 

  5. Berker, R.: Intégration des équations du mouvement d’un fluide visqueux incompressible. Handb. Phys. 2, 1–384 (1963)

    MathSciNet  Google Scholar 

  6. Berker, R.: A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel plates rotating about the same axis. Arch. Mech. Arch. Mech. Stosow. 31, 265–280 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Berker, R.: An exact solution of the Navier–Stokes equation the vortex with curvilinear axis. Int. J. Eng. Sci. 20, 217–230 (1982)

    Article  MathSciNet  Google Scholar 

  8. Bird, R.B., Harris, E.K.: Analysis of steady state shearing and stress relaxation in the Maxwell orthogonal rheometer. AIChE J. 14, 758–761 (1968)

    Article  Google Scholar 

  9. Blyler, L.L., Kurtz, S.J.: Analysis of the Maxwell orthogonal rheometer. J. Appl. Polym. Sci. 11, 127–131 (1967)

    Article  Google Scholar 

  10. Boulanger, Ph, Hayes, M.: Finite amplitude motions in some non-linear elastic media. Proc. R. Ir. Acad. Sect. A Math. Phys. Sci. 89A, 135–146 (1989)

    MATH  Google Scholar 

  11. Carroll, M.M.: Oscillatory shearing of nonlinearly elastic solids. Z. Angew. Math. Phys. ZAMP 25, 83–88 (1974)

    Article  Google Scholar 

  12. Carroll, M.M.: Plane circular shearing of incompressible fluids and solids. Q. J. Mech. Appl. Math. 30, 223–234 (1977a)

    Article  MathSciNet  Google Scholar 

  13. Carroll, M.M.: Plane elastic standing waves of finite amplitude. J. Elast. 7, 411–424 (1977b)

    Article  Google Scholar 

  14. Carroll, M.M., Rajagopal, K.R.: Pseudoplanar elastic deformations and motions of nonlinear elastic solids. Istanb. Tek. Niv. Bl 9, 317–332 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Coleman, B.D., Truesdell, C.: Homogeneous motions of incompressible materials. ZAMM J. Appl. Math. Mech. Z. Angew. Mathe. Mech. 45, 547–551 (1965)

    Article  MathSciNet  Google Scholar 

  16. Coleman, B.D., Markovitz, H., Noll, W.: Viscometric flows of non-Newtonian: Theory and Experiment. Springer, Berlin (1966)

    Book  Google Scholar 

  17. Craik, A.D.D.: Time-dependent solutions of the Navier–Stokes equations for spatially-uniform velocity gradients. Proc. R. Soc. Edinb. Sect. A Math. 124, 127–136 (1994)

    Article  MathSciNet  Google Scholar 

  18. Craik, A.D.D., Criminale, W.O.: Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 406, 13–26 (1986)

    Article  MathSciNet  Google Scholar 

  19. Destrade, M., Saccomandi, G.: Finite amplitude elastic waves propagating in compressible solids. Phys. Rev. E 72, 016620 (2005)

    Article  MathSciNet  Google Scholar 

  20. Fabijonas, B.R., Holm, D.D.: Euler-Poincaré formulation and elliptic instability for nth-gradient fluids. J. Phy. A Math. Gen. 37, 7609 (2004)

    Article  Google Scholar 

  21. Gent, A.N.: Simple rotary dynamic testing machine. Br. J. Appl. Phys. 11(4), 165–167 (1960)

    Article  Google Scholar 

  22. Goddard, J.D.: The dynamics of simple fluids in steady circular shear. Q. Appl. Math. 41, 107–118 (1983)

    Article  MathSciNet  Google Scholar 

  23. Greenhill, A.G.: On the rotation of a liquid ellipsoid about its mean axis. Proc. Camb. Philos. Soc. 3, 233–246 (1879)

    MATH  Google Scholar 

  24. Hayes, M.A., Saccomandi, G.: Finite amplitude transverse waves in special incompressible viscoelastic solids. J. Elast. Phys. Sci. Solids 59, 213–225 (2000)

    MATH  Google Scholar 

  25. Hayes, M.A., Saccomandi, G.: Finite amplitude waves superimposed on pseudoplanar motions for Mooney–Rivlin viscoelastic solids. Int. J. Non-Linear Mech. 37, 1139–1146 (2002)

    Article  Google Scholar 

  26. Holm, D.D.: Gyroscopic analog for collective motion of a stratified fluid. J. Math. Appl. 117, 57–80 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Holm, D.D.: Elliptical vortices and integrable Hamiltonian dynamics of the rotating shallow-water equations. J. Fluid Mech. 227, 393–406 (1991)

    Article  MathSciNet  Google Scholar 

  28. Huilgol, R.R.: On the properties of the motion with constant stretch history occurring in the Maxwell rheometer. Trans. Soc. Rheol. 13, 513–526 (1969)

    Article  Google Scholar 

  29. Maxwell, B., Chartoff, R.P.: Studies of a polymer melt in an orthogonal rheometer. Trans. Soc. Rheol. 9, 41–52 (1965)

    Article  Google Scholar 

  30. Noll, W.: Motions with constant stretch history. Arch. Ration. Mech. Anal. 11, 97–105 (1962)

    Article  MathSciNet  Google Scholar 

  31. Pucci, E., Saccomandi, G.: Universal motions for constrained simple materials. Int. J. Non-Linear Mech. 34(3), 469–484 (1999)

    Article  MathSciNet  Google Scholar 

  32. Rajagopal, K.R.: On the flow of a simple fluid in an orthogonal rheometer. Arch. Ration. Mech. Anal. 79, 39–47 (1982)

    Article  MathSciNet  Google Scholar 

  33. Rajagopal, K.R.: Boundary layers in non-linear fluids. In: Marques, M.D.M., Rodrigues, J.F. (eds.) Trends in Applications of Mathematics to Mechanics: Pitman monographs and surveys in pure and applied mathematics, vol. 77, pp. 209–218. Longman Group England (1995)

  34. Rajagopal, K.R., Carroll, M.M.: A note on an unsteady viscometric flow. Int. J. Eng. Sci. 26, 649–652 (1988)

    Article  Google Scholar 

  35. Rajagopal, K.R., Wineman, A.S.: New exact solutions in non-linear elasticity. Int. J. Eng. Sci. 23, 217–234 (1985)

    Article  Google Scholar 

  36. Rao, A.R., Kasiviswanathan, S.R.: On exact solutions of the unsteady Navier–Stokes equations: the vortex with instantaneous curvilinear axis. Int. J. Eng. Sci. 25, 337–349 (1987)

    Article  MathSciNet  Google Scholar 

  37. Rogers, C.: Elliptic warm-core theory: the pulsrodon. Phys. Lett. A 138(6–7), 267–273 (1989)

    Article  MathSciNet  Google Scholar 

  38. Saccomandi, G.: Some generalized pseudo-plane deformations for the neo-Hookean material. IMA J. Appl. Math. 70, 550–563 (2005)

    Article  MathSciNet  Google Scholar 

  39. Smith, S.H.: Eccentric rotating flows: exact unsteady solutions of the Navier–Stokes equations. Z. Angew. Mathe. Phys. ZAMP 38, 573–579 (1987)

    Article  Google Scholar 

  40. Truesdell, C.: Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis. Arch. Ration. Mech. Anal. 11, 106–113 (1962)

    Article  MathSciNet  Google Scholar 

  41. Truesdell, C., Rajagopal, K.R.: An Introduction to the Mechanics of Fluids. Springer Science and Business Media, New York (2010)

    MATH  Google Scholar 

  42. Wang, C.-C.: Proof that all dynamic universal solutions are quasi-equilibrated. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 50, 311–314 (1970)

    Article  MathSciNet  Google Scholar 

  43. Zahorski, S.: On finite amplitude shear waves in viscoelastic fluids. J. Non-Newton. Fluid Mech. 5, 315–322 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

EP and GS have been partially supported by GNFM of INDAM. We would like to thank K. R. Rajagopal and L. Vergori for their comments on a previous draft of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Saccomandi.

Additional information

In expression of our esteem, gratitude and affection this paper is dedicated to Tommaso Ruggeri on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucci, E., Saccomandi, G. Elliptical flows perturbed by shear waves. Ricerche mat 67, 509–524 (2018). https://doi.org/10.1007/s11587-017-0325-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-017-0325-0

Keywords

Mathematics Subject Classification

Navigation